
60 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

WE PRESENT A perspective on the past contributions,
current status, and future directions of compiler
technology and make four main recommendations
in support of a vibrant compiler field in the years to
come. These recommendations were drawn from
discussions among presenters and attendees at a U.S.
National Science Foundation-sponsored Workshop
on Future Directions for Compiler Research and
Education in 2007. As 2007 was the 50th anniversary
of IBM’s release of the first optimizing compiler, it
was a particularly appropriate year to take stock of the
status of compiler technology and discuss its future
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and
ubiquitous software infrastructure that undergirds the
global economy. The powerful and elegant technology
in compilers has also been invaluable in other
domains (such as hardware synthesis). It is no

exaggeration to say that compilers and
high-level languages are as central to
the information age as semiconductor
technology.

In the coming decade, 2010 to 2020,
compiler research will play a critical role
in addressing two of the major challeng-
es facing the overall computer field:

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased
parallelism, rather than clock rate, will
be the driving force in computing in
the foreseeable future. This ongoing
shift toward parallel architectural para-
digms is one of the greatest challenges
for the microprocessor and software
industries. In 2005, Justin Rattner,
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a
transition to multicore, multithreaded
architectures, and we still have not
demonstrated the ease of program-
ming the move will require…”3

Security and reliability of complex
software systems. Software systems
are increasingly complex, making the
need to address defects and security
attacks more urgent. The profound
economic impact of program defects
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards
and Technology (NIST), concluding
that program defects “are so preva-
lent and so detrimental that they cost
the U.S. economy an estimated $59.5
billion annually, or about 0.6% of the
gross domestic product.” The 2005
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report
Cyber Security: A Crisis of Prioritization
included secure software engineer-
ing and software assurance among its
top 10 research priorities, concluding
with: “Commonly used software engi-
neering practices permit dangerous
errors, such as improper handling of
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year.
In the future, the Nation [the U.S.] may
face even more challenging problems
as adversaries—both foreign and do-

DOI:10.1145/1461928.1461946

Research and education in compiler
technology is more important than ever.

BY MARY HALL, DAVID PADUA, AND KESHAV PINGALI

Compiler
Research:
The Next
50 Years

parsa
Highlight

parsa
Highlight

parsa
Typewriter

parsa
Typewriter

parsa
Typewriter

parsa
Typewriter

parsa
Typewriter

parsa
Underline

parsa
Underline

parsa
Underline

parsa
Underline

parsa
Underline

FEBRUARY 2009 | VOL. 52 | NO. 2 | COMMUNICATIONS OF THE ACM 61

mestic—become increasingly sophisti-
cated in their ability to insert malicious
code into critical software…”

Cultural Shift
To address these challenges, the com-
piler community must change its cur-
rent research model, which emphasiz-
es small-scale individual investigator
activities on one-off infrastructures.
Complete compiler infrastructures are
just too complex to develop and main-
tain in the academic research environ-
ment. However, integration of new
compiler research into established in-
frastructures is required to ensure the
migration of research into practice.
This conundrum can be solved only
through a new partnership between ac-
ademia and industry to produce shared
open source infrastructure, represen-
tative benchmarks, and reproducible
experiments. If successful, this new
model will affect both commercial ap-
plications and scientific capabilities.
Another 2005 PITAC report Computa-
tional Science: Ensuring America’s Com-
petitiveness highlighted the need for
research in enabling software technol-
ogies, including programming models
and their compilers, to maintain U.S.
national competitiveness in computa-
tional science (see the sidebar “Agenda
for the Compiler Community”). The PI-
TAC report said, “Because the Nation’s
[the U.S.] research infrastructure has
not kept pace with changing technolo-
gies, today’s computational science
ecosystem is unbalanced, with a soft-
ware base that is inadequate for keep-
ing pace with and supporting evolving
hardware and application needs. By
starving research in enabling software
and applications, the imbalance forces
researchers [in the U.S.] to build atop
inadequate and crumbling foundations
rather than on a modern, high-quality
software base. The result is greatly
diminished productivity for both re-
searchers and computing systems.”

Accomplishments
When the field of compiling began in
the late 1950s, its focus was limited to
the translation of high-level language
programs into machine code and to the
optimization of space and time require-
ments of programs. The field has since
produced a vast body of knowledge
about program analysis and transfor-

mations, automatic code generation,
and runtime services. Compiler algo-
rithms and techniques are now used
to facilitate software and hardware
development, improve application per-
formance, and detect and prevent soft-
ware defects and malware. The compil-
er field is increasingly intertwined with
other disciplines, including computer
architecture, programming languages,
formal methods, software engineer-
ing, and computer security. Indeed, the
term “compiler” has associations in
the computer science community that
are too narrow to reflect the current
scope of the research in the area.

The most remarkable accomplish-
ment by far of the compiler field is the
widespread use of high-level languag-
es. From banking and enterprise-man-
agement software to high-performance
computing and the Web, most software
today is written in high-level languages
compiled either statically or dynami-
cally. When object-oriented and data

abstraction languages were first pro-
posed back in the late 1960s and early
1970s, their potential for vastly improv-
ing programmer productivity was rec-
ognized despite serious doubts about
whether they could be implemented
efficiently. Static and dynamic opti-
mizations invented by the compiler
community for this purpose put these
fears to rest. More recently, particular-
ly with the introduction of Java in the
mid-1990s, managed runtime systems,
including garbage collection and just-
in-time compilation, have improved
programmer productivity by eliminat-
ing memory leaks.

Compiler algorithms for parsing,
type checking and inference, dataflow
analysis, loop transformations based
on data-dependence analysis, register
allocation based on graph coloring,
and software pipelining are among the
more elegant creations of computer sci-
ence. They have profoundly affected the
practice of computing because they are I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

I
M

O
N

 G
E

I
L

F
U

S

parsa
Highlight

parsa
Highlight

parsa
Highlight

62 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

incorporated into powerful yet widely
used tools. The increasing sophistica-
tion of the algorithms is evident when
today’s algorithms are compared with
those implemented in earlier compil-
ers. Two examples illustrate these ad-
vances. Early compilers used ad hoc
techniques to parse programs. Today’s
parsing techniques are based on for-
mal languages and automata theory,
enabling the systematic development
of compiler front ends. Likewise, early
work on restructuring compilers used
ad hoc techniques for dependence
analysis and loop transformation. To-
day, this aspect of compilers has been
revolutionized by powerful algorithms
based on integer linear programming.

Code optimizations are part of most
commercial compilers, pursuing a
range of objectives (such as avoiding re-
dundant computations, allocating reg-
isters, enhancing locality, and taking
advantage of instruction-level parallel-
ism). Compiler optimization usually de-
livers a good level of performance, and,
in some cases, the performance of com-
piler-generated code is close to the peak
performance of the target machine.
Achieving a similar result with manual
tuning, especially for large codes, is ex-
traordinarily difficult, expensive, and
error prone. Self-tuning program gen-
erators for linear algebra and signal
processing are particularly effective in
this regard.

Tools for identifying program de-
fects and security risks are increasingly
popular and used regularly by the larg-
est software developers. They are nota-
bly effective in identifying some of the
most frequent bugs or defects (such as
improper memory allocations and deal-

locations, race conditions, and buffer
overruns). One indication of the increas-
ing importance of program-analysis
algorithms in reliability and security is
the growth of the software tools indus-
try that incorporate such algorithms.

One manifestation of the intense
intellectual activity in compilers is
that the main conferences in the area,
including the ACM Symposium on
Programming Language Design and
Implementation (PLDI), ACM Sympo-
sium on Principles of Programming
Languages (POPL), ACM Symposium
on Principles and Practice of Parallel
Programming (PPoPP), and ACM Con-
ference on Object-Oriented Program-
ming Systems, Languages and Applica-
tions (OOPSLA), are among the most
influential, respected, and selective
in computer science.a Another indica-
tion of the field’s influence is that the
phrases “programming languages”
and “compilers” occur in the citations
of no less than seven Turing award win-
ners, including Peter Naur in 2005 and
Fran Allen in 2006.

Compiler Challenges
The growing complexity of machines
and software, introduction of multi-
cores, and concern over security are
among the more serious problems that

a An indication of the influence of compiler and
programming language research is the cita-
tion rate rank of the field’s major conferences
relative to other computer science conferenc-
es and journals worldwide as reported by Cite-
seer (citeseer.ist.psu.edu/impact.html). Their
rank on Citeseer as of December 2008 is PLDI
(3rd), POPL (13th), PPoPP (14th), and OOPSLA
(28th) out of a total of 1,221 computer science
conferences and journals.

must be addressed today. Here, we de-
scribe the role compiler technology
plays in addressing them:

Program optimization. We live in
the era of multicore processors; from
now on, clock frequencies will rise
slowly if at all, but the number of cores
on processor chips is likely to double
every couple of years. Therefore, by
2020, microprocessors are likely to
have hundreds or even thousands of
cores, heterogeneous and possibly spe-
cialized for different functionalities.
Exploiting large-scale parallel hard-
ware will be essential for improving an
application’s performance or its capa-
bilities in terms of execution speed and
power consumption. The challenge for
compiler research is how to enable the
exploitation of the power of the target
machine, including its parallelism,
without undue programmer effort.

David Kuck, an Intel Fellow, empha-
sized in a private communication the
importance of compiler research for
addressing the multicore challenge.
He said that the challenge of optimal
compilation lies in its combinatorial
complexity. Languages expand as com-
puter use reaches new application do-
mains and new architectural features
arise. Architectural complexity (uni-
and multicore) grows to support per-
formance, and compiler optimization
must bridge this widening gap. Com-
piler fundamentals are well understood
now, but where to apply what optimiza-
tion has become increasingly difficult
over the past few decades. Compilers
today are set to operate with a fixed
strategy (such as on a single function
in a particular data context) but have
trouble shifting gears when different

The following agenda for the
compiler community demands
a broader collaboration
between industry and academic
institutions, as well as support
from government funding
agencies, to address the challenges
discussed here.

Enablers to facilitate collab-
orative compiler research:

Open and extensible compiler �
infrastructure with state-of-the-

art optimizations;
Collections of benchmarks �

for evaluating advances in com-
pilers and a strategy for keeping
the benchmark collections up
to date; and

Methodology for measuring �
progress and reporting results
that encourages all publications
to include data in repositories
to enable other researchers to
reproduce the results.

Research challenges in opti-
mi zation:

Make parallel programming �
mainstream;

Write compilers capable of �
self-improvement; and

Develop performance models �
to support optimizations for
parallel code.

Research challenges in cor-
rect ness:

Enable development of soft- �

ware as reliable as an airplane;
Enable system software that is �

secure at all levels; and
Verify the entire software stack. �
Enrich computer science

education with compiler technology:
Expand compiler courses with �

examples from new problem do-
mains (such as security); and

Work with experts in other �
domains to incorporate compiler
algorithms into their courses.

Collaboration, Research Challenges, Education

Agenda for the Compiler Community

parsa
Highlight

parsa
Highlight

parsa
Highlight

parsa
Highlight

contributed articles

FEBRUARY 2009 | VOL. 52 | NO. 2 | COMMUNICATIONS OF THE ACM 63

code is encountered in a global context
(such as in any whole application).

Kuck also said, “The best hope for
the future is adaptive compilation that
exploits equivalence classes based
on ‘codelet’ syntax and optimiza-
tion potential. This is a deep research
topic, and details are only beginning
to emerge. Success could lead to dra-
matic performance gains and compiler
simplifications while embracing new
language and architecture demands.”

Make parallel programming main-
stream. Although research in parallel
programming began more than 30 years
ago, parallel programming is the norm
in only a few application areas (such as
computational science and databases).
These server-side applications deal
mostly with structured data (such as ar-
rays and relations), and computations
can be done concurrently with little syn-
chronization. In contrast, many client-
side applications deal with unstructured
data (such as sets and graphs) and re-
quire much-finer-grain cross-processor
synchronization. Programmers have
few tools for coding such applications
at a high level of abstraction without
explicit management of parallelism,
locality, communication, load balanc-
ing, power and energy requirements,
and other dimensions of optimization.
Furthermore, as parallelism becomes
ubiquitous, performance portability of
programs across parallel platforms and
processor generations will be essential
for developing productive software.

Breakthroughs in compiler tech-
nology are essential for making paral-
lel programming mainstream. They
will require collaboration with other
areas, including tighter integration of
compilers with languages, libraries,
and runtime environments, to make
available the semantic information
needed to optimize programs for paral-
lel execution. The historical approach
of “whole-program” analysis must be
replaced with a hierarchical approach
to software development and optimi-
zation in which code within a software
layer is optimized without analyzing
code in lower layers. This abstraction
approach requires that each layer have
a well-defined API with semantics that
describe the information model or on-
tology of that layer (such as the Google
map-reduce programming model).
These semantics are used by the com-

piler to optimize software in higher lay-
ers. In the reverse direction, contextual
information from higher layers can be
used to specialize and optimize code at
lower layers.

Because guidance from the pro-
grammer is also necessary, interactive
or semiautomatic compiler-based tools
must also be developed. A noteworthy
example of such an approach is a proj-
ect that used race-detection software to
interactively parallelize the Intel IA32
compiler.1 Interactivity may require in-
corporation of compilers into integrat-
ed development environments, rede-
signing compiler optimizations to be
less dependent on the order in which
the optimizations are applied, and re-
designing compiler algorithms and
frameworks to make them more suit-
able for an interactive environment.

The advent of just-in-time compila-
tion for languages (such as Java) blurs
the distinction between compile time
and runtime, opening up new opportu-
nities for program optimization based
on dynamically computed program val-
ues. As parallel client-side applications
emerge, runtime dependence check-
ing and optimization are likely to be
essential for optimizing programs that
manipulate dynamic data structures
(such as graphs).

Develop a rigorous approach to archi-
tecture-specific optimization. Compiler
front ends benefited greatly from de-
velopment in the 1960s and 1970s of
a systematic theory of lexical analysis
and parsing based on automata theory.
However, as mentioned in the private
communication by David Kuck quoted
earlier, there is no systematic approach
for performing architecture-specific
program optimization, thus hamper-
ing construction of parallelizing and
optimizing compilers. Developing ef-
fective overall optimization strategies
requires programmers be able to deal
with a vast number of interacting trans-
formations, nonlinear objective func-
tions, and performance prediction,
particularly if performance depends
on input data. The program optimiza-
tion challenge is certainly difficult but
not insurmountable.

Recent research at a variety of in-
stitutions, including Carnegie Mellon
University, the University of California,
Berkeley, the University of Illinois, MIT,
and University of Tennessee, has dem-

The most
remarkable
accomplishment
by far of the
compiler field
is the widespread
use of high-level
languages.

parsa
Highlight

parsa
Highlight

64 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

performance of program alternatives,
rather than their absolute performance.
The literature has proposed a variety of
parallel computing models (such as the
Parallel Random Access Machine, or
PRAM, model for analyzing parallel al-
gorithms and the LogP model for com-
munication), but they are too abstract to
serve as useful targets for performance
optimization by compilers. However,
through interactions with the theory
and architecture communities, new
models that more accurately capture
today’s multicore platforms should be
developed. Such models could also be
the foundation of a systematic theory of
program parallelization and optimiza-
tion for performance, power, through-
put, and other criteria.

Correctness and security. The abil-
ity to detect coding defects has always
been an important mission for com-
pilers. In facilitating programming,
high-level languages both simplified
the representation of computations
and helped identify common program
errors, including undeclared variable
uses and a range of semantic errors
pinpointed through increasingly so-
phisticated type checking. Much more
can and must be done with program
analysis to help avoid incorrect results
and security vulnerabilities.

Regarding software security, Steve
Lipner, senior director of security engi-
neering strategy in Microsoft’s Trustwor-
thy Computing Group, said in a private
communication: “With the beginning
of the Trustworthy Computing initiative
in 2002, Microsoft began to place heavy
emphasis on improving the security
of its software. Program-analysis tools
have been key to the successes of these
efforts, allowing our engineers to detect
and remove security vulnerabilities be-
fore products are released. Today, Micro-
soft’s engineering practices for security
are formalized in the Security Develop-
ment Lifecycle, or SDL, which mandates
application of program-analysis tools
and security-enhancing options. These
tools and compiler options are the
product of many years of research in
program analysis and compilers, which
has proven invaluable in addressing the
difficult security challenges the industry
faces. Microsoft’s security teams eagerly
look forward to the fruits of continued
research in compiler technology and as-
sociated improvements in the effective-

onstrated the potential of offline em-
pirical search to tune the performance
of application code to a specific archi-
tecture. Often called “autotuning,” this
approach has produced results com-
petitive with hand tuning in such well-
studied domains as linear algebra and
signal processing. The basic approach
is that either the application program-
mer expresses or the compiler derives a
well-defined search space of alternative
implementations for a program that is
then explored systematically by compil-
er and runtime tools so the optimization
process is able to achieve results compa-
rable to hand tuning. The challenge is to
extend the approach to parallel systems
and multicore processors, as well as to
integrate the technology into a coherent,
easy-to-use system that applies to a large
number of complex applications.

Language and compiler technol-
ogy supporting autotuning will greatly
facilitate the construction of libraries
implementing numerical and symbol-
ic algorithms for a variety of domains,
building on examples from self-tuning
linear algebra and signal-processing
libraries. In addition to encapsulating
efficient algorithms that can be imple-
mented by only a handful of compiler
experts and used by a vast number of
nonexpert programmers, these librar-
ies can contribute to the design of fu-
ture high-level languages and abstrac-
tions by exposing new and interesting
patterns for expressing computation.
Furthermore, describing the character-
istics of these libraries in a machine-
usable format, such that compilers
understand the semantic properties
and performance characteristics of the
library routines, will enable the imple-
mentation of interactive tools that
analyze and make recommendations
about the incorporation of library rou-
tines in their codes.

An even more significant challenge is
for compiler researchers to extend this
approach to online tuning. Evaluating
the performance of different versions of
a program by running them directly on
the native machine is unlikely to scale
to large numbers of cores or to large
programs, even in an offline setting.
One strategy is for compiler researchers
to develop tractable machine and pro-
gram abstractions to permit efficient
evaluation of program alternatives,
since what’s needed is only the relative

Breakthroughs
in compiler
technology are
essential to
making parallel
programming
mainstream.

parsa
Highlight

parsa
Highlight

parsa
Highlight

parsa
Highlight

contributed articles

FEBRUARY 2009 | VOL. 52 | NO. 2 | COMMUNICATIONS OF THE ACM 65

ness of the tools that we use to make our
products more secure.”

Tools for program correctness and
security must avoid wasting program-
mer time with false positives without
sacrificing reliability or security and
must prioritize, rank, and display the
results of the analyses. Furthermore,
they cannot negatively affect program
performance or ease of use. As with
other challenges, these issues are best
addressed through a tighter integra-
tion of compilers, languages, libraries,
and runtime systems. In particular, we
anticipate an important role for spe-
cialized program-analysis systems that
involve techniques relevant to each
particular problem domain.

The foremost challenge in this area
targets what traditionally is called de-
bugging. The goal is to develop engi-
neering techniques to detect and avoid
program defects. The second challenge
targets security risks, aiming to devel-
op strategies to detect vulnerabilities
to external attacks. The final challenge
is to develop automatic program-verifi-
cation techniques.

Enable development of software as reli-
able as an airplane. Improving the quali-
ty of software by reducing the number of
program defects drives much research
in computer science and has a profound
economic influence on the overall U.S.
national economy as indicated by the
NIST report mentioned earlier. Compil-
er technology in the form of static and
dynamic program analysis has proved
useful in the identification of complex
errors, but much remains to be done.
Extending this work demands new
program-analysis strategies to improve
software construction, maintenance,
and evolution techniques, bringing the
programming process to conform to the
highest engineering standards (such as
those in automotive, aeronautical, and
electronic engineering).

An effective strategy would likely
involve analysis techniques, new lan-
guage features for productivity and reli-
ability, and new software-development
paradigms. Nevertheless, at the core
of these tools and strategies are ad-
vanced compiler and program-analysis
techniques that guarantee consistent
results while maintaining the overall
quality of the code being generated,
where metrics for quality might include
execution time, power consumption,

prove that it meets its specifications,
and this proof should be checked by a
computer program.”2

Although program verification is
not traditionally considered a compil-
er challenge, we include it here due to
its potential as a formal solution to the
two previous challenges: the interplay
between program analysis and auto-
matic verification and growing interest
in the verification of compilers.

Verifying compiler code and algo-
rithms would be a good first step to-
ward addressing this challenge for two
reasons: First, compilers contain speci-
fications of their own correctness, thus
providing clear requirements for the
verification process. And second, the
verification of the code generated by
compilers is a necessary aspect of the
verification of software in general. Re-
cent advances in compiler verification
anticipate a future when it will be pos-
sible to rely on formal and mechanical
reasoning at the source level. The ulti-
mate goal is to prove that the compiler
is extensionally correct (input-output
preserving) and respects time, space,
and power constraints.

Although powerful and effective
verification tools would make a tre-
mendous contribution to computing
practice, the importance of program
verification goes beyond its use in im-
proving software quality. As an example
of a formal reasoning system, program
verification is intellectually important
in and of itself. It has been argued by
researchers in machine learning that
program verification is an ideal sub-
ject for the development of the first ad-
vanced reasoning system. After all, pro-
gramming is a subject that computer
scientists who study reasoning systems
really understand.

Recommendations
To address these challenges, the com-
piler community needs a vibrant re-
search program with participation by
industry, national labs, and universi-
ties worldwide. Advances in compiler
technology will require the creativity,
enthusiasm, and energy of individual
researchers, but given the complexity
of compiler technology and software
systems, long-term projects led by
compiler specialists from industry and
research institutions is necessary for
success. Therefore, we offer four main

and code size. Beyond producing more
reliable programs, the tools resulting
from this research will make the profes-
sion of programming more rewarding
by enabling developers and testers alike
to focus on the more creative aspects of
their work.

Enable system software that is secure
at all levels. As with software reliabil-
ity, sophisticated program-analysis
and transformation techniques have
been applied in recent years to the de-
tection and prevention of software vul-
nerabilities (such as buffer overflows
and dangling pointers) that arise from
coding defects. There is some overlap
between detection and prevention of
software vulnerabilities and the previ-
ous challenge of software reliability in
that any vulnerability can be consid-
ered a program defect. However, these
challenges differ in that security strat-
egies must account for the possibil-
ity of external attacks in the design of
analyses and transformations. Thus,
certain techniques (such as system
call authentication and protection
against SQL injection) are unique to
the challenge of ensuring computer
security.

Compilers play a critical role in en-
hancing computer security by reducing
the occurrence of vulnerabilities due to
coding errors and by providing program-
mers with tools that automate their
identification and prevention. Program-
ming in languages that enforce a strong
type discipline is perhaps the most use-
ful risk-reduction strategy. Functional
language programs have more trans-
parent semantics than imperative lan-
guage programs, so language research-
ers have argued that the best solution to
reducing software vulnerabilities is to
program in functional languages, possi-
bly extended with transactions for han-
dling mutable state.

Enable automatic verification of the
complete software stack. Formally prov-
ing that a program conforms to a given
specification (program verification) is a
powerful strategy for completely avoid-
ing software defects. A manifestation
is the longstanding recognition that
program verification is one of the great
challenges of computer science. More
than 40 years ago, John McCarthy,
then a professor of computer science
at Stanford University, wrote: “Instead
of debugging a program, one should

parsa
Highlight

parsa
Highlight

parsa
Highlight

parsa
Highlight

parsa
Highlight

parsa
Highlight

66 COMMUNICATIONS OF THE ACM | FEBRUARY 2009 | VOL. 52 | NO. 2

contributed articles

outperform their proprietary counter-
parts; representative input data sets
must accompany any set of bench-
marks. Also desirable is a description
of the algorithms and data structures
to enable research in new program-
ming languages and extensions that
may be better suited for expressing the
computation.

Federal agencies and industry must
collaborate to establish the necessary
funding opportunities and incentives
that will move compiler specialists at
universities and industry to address the
research infrastructure and benchmark
challenges. Funding opportunities
should also be made available for small-
er academic studies and development
efforts. The computer science commu-
nity has achieved notable success in
developing novel compiler infrastruc-
tures, including: compiler front-end
development; program-analysis frame-
works for research in compilers; verifi-
cation tools, security applications, and
software-engineering tools; and virtual-
machine frameworks for both main-
stream and special-purpose languages.
Even if the GNU and industry-developed
compilers were a useful infrastructure
for research, development of new ro-
bust, easy-to-use infrastructures by the
researchers who need them are critical
for future advances. Not only is it impor-
tant to support such research projects,
the research community must recog-
nize their academic merit.

Develop methodologies and reposito-
ries that enable the comparison of meth-
ods and reproducibility of results. The
reproducibility of results is critical for
comparing the strategies, machines,
languages, and problem domains. Too
much of the information available to-

recommendations:
Enable the creation of compiler re-

search centers. There are few large
compiler research groups anywhere in
the world today. At universities, such
groups typically consist of a senior re-
searcher and a few students, and their
projects tend to be short term, usually
only as long as a Ph.D. project. Mean-
while, the few industrial groups study-
ing advanced compiler technology tend
to focus on near-term solutions, even
as the compilers, the programs they
translate and analyze, and the target ex-
ecution environments have increased in
complexity. The result is that too much
of today’s compiler research focuses on
narrow problems, ignoring the oppor-
tunity to develop revolutionary strate-
gies requiring long-term commitment
for their development and evaluation.

In those areas of compiler research
seeing diminishing returns today from
incremental approaches (such as pro-
gram analysis and optimization), re-
searchers must attempt radical new so-
lutions that are likely to be lengthy and
involved. The compiler research com-
munity (university and industry) must
work together to develop a few large
projects or centers where long-term
research projects with the support of a
stable staff are carried out. Industry and
funding agencies must work together to
stimulate and create opportunities for
the initiation of these centers. Joint in-
dustry/government funding must sup-
port the ongoing evolution and mainte-
nance of the software.

Create significant university/industry/
government partnerships for the develop-
ment of infrastructure and the gathering
of benchmarks while funding individual
projects at universities and other research

centers. Implementation and experi-
mentation are central to the compiler
area. New techniques and tools, as well
as new implementations of known ap-
proaches, can be meaningfully evalu-
ated only after they are incorporated
into industrial-strength compiler in-
frastructures with state-of-the-art opti-
mizations and code-generation strate-
gies. The absence of widely accepted
compiler research platforms has hin-
dered research efforts in compiler
technology, design of new program-
ming languages, and development of
optimizations for new machine archi-
tectures. The development of complete
compilers requires an immense effort
typically beyond the ability of a single
research group. Source code is now
available for the GNU compiler and for
other compilers developed by indus-
try (such as IBM’s Java Jikes compiler,
Intel’s Open Research Compiler, and
Microsoft’s Phoenix framework). They
may yet evolve into the desired infra-
structure, but none currently meets all
the needs of the community.

Experimental studies require
benchmarks that are representative
of the most important applications at
the time of the evaluation, meaning
the process of gathering representative
programs is a permanent process. Nu-
merous efforts have sought to gather
benchmarks, but the collections tend
to be limited and are often complicat-
ed by doubts as to how representative
they truly are. A serious difficulty is that
many widely used programs are propri-
etary. In domains where open source
applications might represent propri-
etary software, it would suffice for the
purpose of evaluating compilers to
make use of open source versions that

Tim Burrell of Microsoft’s Secure Windows Initiative describing the Phoenix compiler and automated vulnerability finding
at the EUSecWest conference, May 2008, London, U.K.

P
H

O
T

O
G

R
A

P
H

 B
Y

 R
Y

O
 H

I
R

O
S

A
W

A

parsa
Highlight

parsa
Highlight

parsa
Highlight

contributed articles

FEBRUARY 2009 | VOL. 52 | NO. 2 | COMMUNICATIONS OF THE ACM 67

day is anecdotal. In many disciplines,
reviewers and peer scientists expect pa-
pers to include sufficient information
so other groups are able to reproduce
the results being obtained, but papers
do not adequately capture compiler
experiments where numerous imple-
mentation details determine the final
outcome. With the help of open source
software, the Web can be used to pub-
lish the software and data used in the
evaluations being reported. Major
conferences and organizations (such
as ACM) must provide mechanisms
for publishing software, inputs, and
experimental data as metadata for the
publications that report these experi-
ments. Such repositories are useful
for measuring progress and could also
serve as a resource to those interested
in the history of technology.

Develop curriculum recommenda-
tions on compiler technology. Compiler
technology is complicated, and ad-
vances in the discipline require bright
researchers and practitioners. Mean-
while, computer science has grown as
a discipline with numerous exciting ar-
eas of research and studies to pursue.
The compiler community must convey
the importance and intellectual beauty
of the discipline to each generation of
students. Compiler courses must clear-
ly demonstrate to students the extraor-
dinary importance, range of applica-
bility, and internal elegance of what is
one of the most fundamental enabling
technologies of computer science.

Whereas compiler technology used
to be a core course in most under-
graduate programs, many institutions
now offer their compiler course as an
optional upper-level course for com-
puter science and computer engineer-
ing students and often include inter-
esting projects that deliver a capstone
experience. A good upper-level com-
piler course combines data structures,
algorithms, and tools for students as
they build a large piece of software that
performs an interesting and practical
function. However, these courses are
considered difficult by both faculty and
students, and students often have oth-
er interesting choices. Thus, fewer stu-
dents are exposed to the foundational
ideas in compilers or to compilers as a
potential area only for graduate study.

Compiler algorithms are of tremen-
dous educational value for anyone in-

terested in compiler implementation
and machine design. Knowledge of
the power and limitations of compiler
algorithms is valuable to all users of
compilers, debuggers, and any tool
built using compiler algorithms that
encapsulate many, if not most, of the
important program-analysis and trans-
formation strategies necessary for per-
formance and correctness. Therefore,
learning about compiler algorithms
leads to learning about program op-
timization and typical programming
errors in a deep and rigorous manner.
For these reasons, programmers with a
solid background in compilers tend to
excel in their profession.

One approach to promoting knowl-
edge of compiler algorithms involves
discussion of specific compiler algo-
rithms throughout the computer sci-
ence curriculum—in automata theory,
programming languages, computer
architecture, algorithms, parallel pro-
gramming, and software engineering.
The main challenge is to define the key
compiler concepts that all computer sci-
ence majors must know and to suggest
the content that should be included in
core computer science courses.

A second complementary approach
is to develop advanced courses focus-
ing on compiler-based analyses for
software engineering, scientific com-
puting, and security. They could as-
sume the basic concepts taught in core
courses and move quickly into new ma-
terial (such as virus detection based on
compiler technology). The challenge
is how to design courses that train
students in advanced compiler tech-
niques and apply them to areas that are
interesting and relevant (such as soft-
ware reliability and software engineer-
ing). They may not be called “compiler
courses” but labeled in ways that reflect
a particular application area (such as
computer security, verification tools,
program-understanding tools) or per-
haps something more general like pro-
gram analysis and manipulation.

Conclusion
Although the compiler field has trans-
formed the landscape of computing, im-
portant compilation problems remain,
even as new challenges (such as multi-
core programming) have appeared. The
unsolved compiler challenges (such
as how to raise the abstraction level of

parallel programming, develop secure
and robust software, and verify the en-
tire software stack) are of great practical
importance and rank among the most
intellectually challenging problems in
computer science today.

To address them, the compiler field
must develop the technologies that en-
able more of the progress the field has
experienced over the past 50 years. Com-
puter science educators must attract
some of the brightest students to the
compiler field by showing them its deep
intellectual foundations, highlighting
the broad applicability of compiler tech-
nology to many areas of computer sci-
ence. Some challenges facing the field
(such as the lack of flexible and powerful
compiler infrastructures) can be solved
only through communitywide effort.
Funding agencies and industry must be
made aware of the importance and com-
plexity of the challenges and willing to
invest long-term financial and human
resources toward finding solutions.

References
1. Kirkegaard, K.J., Haghighat, M.R., Narayanaswamy, R.,

Shankar, B., Faiman, N, and Sehr, D.C. Methodology,

tools, and techniques to parallelize large-scale

applications: A case study. Intel Technology Journal

11, 4 (Nov. 2007).

2. McCarthy, J. A basis for a mathematical theory

of computation. In Computer Programming and

Formal Systems, P. Braffort and D. Hirschberg, Eds.

North-Holland Publishing Company, Amsterdam, The

Netherlands, 1963, 33-70.

3. Merritt, R. Computer R&D rocks on. EE Times

(Nov. 21, 2005); www.eetimes.com/showArticle.

jhtml?articleID=174400350.

Acknowledgment
We thank Vikram Adve, Calin Cascaval, Susan Graham,

Jim Larus, Wei Li, Greg Morrisett, and David Sehr for

their many valuable and thoughtful suggestions. Special

thanks to Laurie Hendren for organizing the discussion on

education and preparing the text of the recommendation

concerning curriculum recommendations on compiler

technology. We gratefully acknowledge the support of

the U.S. National Science Foundation under Award No.

0605116. The opinions and recommendations are those

of the authors and do not necessarily reflect the views of

the National Science Foundation. We also acknowledge

all workshop participants whose insight and enthusiasm

made this article possible, V. Adve, A. Adl-Tabatabatai, S.

Amarasinghe, A. Appel, D. Callahan, C. Cascaval, K. Cooper,

A. Chtchelkanova, F. Darema, J. Davidson, W. Harrod,

J. Hiller, L. Hendren, D. Kuck, M. Lam, J. Larus, W. Li, K.

McKinley, G. Morrisett, T. Pinkston, V. Sarkar, D. Sehr, K.

Stoodley, D. Tarditi, R. Tatge, and K. Yelick.

Mary Hall (mhall@cs.utah.edu) is an associate professor

in the School of Computing at the University of Utah, Salt

Lake City, UT.

David Padua (padua@illinois.edu) is the Donald Biggar

Willett Professor of Computer Science at the University of

Illinois at Urbana-Champaign.

Keshav Pingali (pingali@cs.utexas.edu) is the W.A.

“Tex” Moncrief Chair of Grid and Distributed Computing

Professor in the Department of Computer Sciences at

the University of Texas, Austin, and a professor in the

Institute for Computational Engineering and Sciences also

at the University of Texas, Austin.

© 2009 ACM 0001-0782/09/0200 $5.00

parsa
Highlight

