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WE PRESENT A perspective on the past contributions, 
current status, and future directions of compiler 
technology and make four main recommendations 
in support of a vibrant compiler field in the years to 
come. These recommendations were drawn from 
discussions among presenters and attendees at a U.S. 
National Science Foundation-sponsored Workshop 
on Future Directions for Compiler Research and 
Education in 2007. As 2007 was the 50th anniversary 
of IBM’s release of the first optimizing compiler, it 
was a particularly appropriate year to take stock of the 
status of compiler technology and discuss its future 
over the next 50 years. Today, compilers and high-
level languages are the foundation of the complex and 
ubiquitous software infrastructure that undergirds the 
global economy. The powerful and elegant technology 
in compilers has also been invaluable in other 
domains (such as hardware synthesis). It is no 

exaggeration to say that compilers and 
high-level languages are as central to 
the information age as semiconductor 
technology. 

In the coming decade, 2010 to 2020, 
compiler research will play a critical role 
in addressing two of the major challeng-
es facing the overall computer field: 

Cost of programming multicore pro-
cessors. While machine power will con-
tinue to grow impressively, increased 
parallelism, rather than clock rate, will 
be the driving force in computing in 
the foreseeable future. This ongoing 
shift toward parallel architectural para-
digms is one of the greatest challenges 
for the microprocessor and software 
industries. In 2005, Justin Rattner, 
chief technology officer of Intel Cor-
poration, said, “We are at the cusp of a 
transition to multicore, multithreaded 
architectures, and we still have not 
demonstrated the ease of program-
ming the move will require…”3 

Security and reliability of complex 
software systems. Software systems 
are increasingly complex, making the 
need to address defects and security 
attacks more urgent. The profound 
economic impact of program defects 
was discussed in a 2002 study commis-
sioned by the U.S. Department of Com-
merce National Institute of Standards 
and Technology (NIST), concluding 
that program defects “are so preva-
lent and so detrimental that they cost 
the U.S. economy an estimated $59.5 
billion annually, or about 0.6% of the 
gross domestic product.” The 2005 
U.S. President’s Information Technol-
ogy Advisory Committee (PITAC) report 
Cyber Security: A Crisis of Prioritization 
included secure software engineer-
ing and software assurance among its 
top 10 research priorities, concluding 
with: “Commonly used software engi-
neering practices permit dangerous 
errors, such as improper handling of 
buffer overflows, which enable hun-
dreds of attack programs to compro-
mise millions of computers every year. 
In the future, the Nation [the U.S.] may 
face even more challenging problems 
as adversaries—both foreign and do-
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mestic—become increasingly sophisti-
cated in their ability to insert malicious 
code into critical software…”

Cultural Shift 
To address these challenges, the com-
piler community must change its cur-
rent research model, which emphasiz-
es small-scale individual investigator 
activities on one-off infrastructures. 
Complete compiler infrastructures are 
just too complex to develop and main-
tain in the academic research environ-
ment. However, integration of new 
compiler research into established in-
frastructures is required to ensure the 
migration of research into practice. 
This conundrum can be solved only 
through a new partnership between ac-
ademia and industry to produce shared 
open source infrastructure, represen-
tative benchmarks, and reproducible 
experiments. If successful, this new 
model will affect both commercial ap-
plications and scientific capabilities. 
Another 2005 PITAC report Computa-
tional Science: Ensuring America’s Com-
petitiveness highlighted the need for 
research in enabling software technol-
ogies, including programming models 
and their compilers, to maintain U.S. 
national competitiveness in computa-
tional science (see the sidebar “Agenda 
for the Compiler Community”). The PI-
TAC report said, “Because the Nation’s 
[the U.S.] research infrastructure has 
not kept pace with changing technolo-
gies, today’s computational science 
ecosystem is unbalanced, with a soft-
ware base that is inadequate for keep-
ing pace with and supporting evolving 
hardware and application needs. By 
starving research in enabling software 
and applications, the imbalance forces 
researchers [in the U.S.] to build atop 
inadequate and crumbling foundations 
rather than on a modern, high-quality 
software base. The result is greatly 
diminished productivity for both re-
searchers and computing systems.” 

Accomplishments 
When the field of compiling began in 
the late 1950s, its focus was limited to 
the translation of high-level language 
programs into machine code and to the 
optimization of space and time require-
ments of programs. The field has since 
produced a vast body of knowledge 
about program analysis and transfor-

mations, automatic code generation, 
and runtime services. Compiler algo-
rithms and techniques are now used 
to facilitate software and hardware 
development, improve application per-
formance, and detect and prevent soft-
ware defects and malware. The compil-
er field  is increasingly intertwined with 
other disciplines, including computer 
architecture, programming languages, 
formal methods, software engineer-
ing, and computer security. Indeed, the 
term “compiler” has associations in 
the computer science community that 
are too narrow to reflect the current 
scope of the research in the area. 

The most remarkable accomplish-
ment by far of the compiler field is the 
widespread use of high-level languag-
es. From banking and enterprise-man-
agement software to high-performance 
computing and the Web, most software 
today is written in high-level languages 
compiled either statically or dynami-
cally. When object-oriented and data 

abstraction languages were first pro-
posed back in the late 1960s and early 
1970s, their potential for vastly improv-
ing programmer productivity was rec-
ognized despite serious doubts about 
whether they could be implemented 
efficiently. Static and dynamic opti-
mizations invented by the compiler 
community for this purpose put these 
fears to rest. More recently, particular-
ly with the introduction of Java in the 
mid-1990s, managed runtime systems, 
including garbage collection and just-
in-time compilation, have improved 
programmer productivity by eliminat-
ing memory leaks. 

Compiler algorithms for parsing, 
type checking and inference, dataflow 
analysis, loop transformations based 
on data-dependence analysis, register 
allocation based on graph coloring, 
and software pipelining are among the 
more elegant creations of computer sci-
ence. They have profoundly affected the 
practice of computing because they are I
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incorporated into powerful yet widely 
used tools. The increasing sophistica-
tion of the algorithms is evident when 
today’s algorithms are compared with 
those implemented in earlier compil-
ers. Two examples illustrate these ad-
vances. Early compilers used ad hoc 
techniques to parse programs. Today’s 
parsing techniques are based on for-
mal languages and automata theory, 
enabling the systematic development 
of compiler front ends. Likewise, early 
work on restructuring compilers used 
ad hoc techniques for dependence 
analysis and loop transformation. To-
day, this aspect of compilers has been 
revolutionized by powerful algorithms 
based on integer linear programming. 

Code optimizations are part of most 
commercial compilers, pursuing a 
range of objectives (such as avoiding re-
dundant computations, allocating reg-
isters, enhancing locality, and taking 
advantage of instruction-level parallel-
ism). Compiler optimization usually de-
livers a good level of performance, and, 
in some cases, the performance of com-
piler-generated code is close to the peak 
performance of the target machine. 
Achieving a similar result with manual 
tuning, especially for large codes, is ex-
traordinarily difficult, expensive, and 
error prone. Self-tuning program gen-
erators for linear algebra and signal 
processing are particularly effective in 
this regard.

Tools for identifying program de-
fects and security risks are increasingly 
popular and used regularly by the larg-
est software developers. They are nota-
bly effective in identifying some of the 
most frequent bugs or defects (such as 
improper memory allocations and deal-

locations, race conditions, and buffer 
overruns). One indication of the increas-
ing importance of program-analysis 
algorithms in reliability and security is 
the growth of the software tools indus-
try that incorporate such algorithms. 

One manifestation of the intense 
intellectual activity in compilers is 
that the main conferences in the area, 
including the ACM Symposium on 
Programming Language Design and 
Implementation (PLDI), ACM Sympo-
sium on Principles of Programming 
Languages (POPL), ACM Symposium 
on Principles and Practice of Parallel 
Programming (PPoPP), and ACM Con-
ference on Object-Oriented Program-
ming Systems, Languages and Applica-
tions (OOPSLA), are among the most 
influential, respected, and selective 
in computer science.a Another indica-
tion of the field’s influence is that the 
phrases “programming languages” 
and “compilers” occur in the citations 
of no less than seven Turing award win-
ners, including Peter Naur in 2005 and 
Fran Allen in 2006.

Compiler Challenges 
The growing complexity of machines 
and software, introduction of multi-
cores, and concern over security are 
among the more serious problems that 

a An indication of the influence of compiler and 
programming language research is the cita-
tion rate rank of the field’s major conferences 
relative to other computer science conferenc-
es and journals worldwide as reported by Cite-
seer (citeseer.ist.psu.edu/impact.html). Their 
rank on Citeseer as of December 2008 is PLDI 
(3rd), POPL (13th), PPoPP (14th), and OOPSLA 
(28th) out of a total of 1,221 computer science 
conferences and journals.

must be addressed today. Here, we de-
scribe the role compiler technology 
plays in addressing them: 

Program optimization. We live in 
the era of multicore processors; from 
now on, clock frequencies will rise 
slowly if at all, but the number of cores 
on processor chips is likely to double 
every couple of years. Therefore, by 
2020, microprocessors are likely to 
have hundreds or even thousands of 
cores, heterogeneous and possibly spe-
cialized for different functionalities. 
Exploiting large-scale parallel hard-
ware will be essential for improving an 
application’s performance or its capa-
bilities in terms of execution speed and 
power consumption. The challenge for 
compiler research is how to enable the 
exploitation of the power of the target 
machine, including its parallelism, 
without undue programmer effort. 

David Kuck, an Intel Fellow, empha-
sized in a private communication the 
importance of compiler research for 
addressing the multicore challenge. 
He said that the challenge of optimal 
compilation lies in its combinatorial 
complexity. Languages expand as com-
puter use reaches new application do-
mains and new architectural features 
arise. Architectural complexity (uni- 
and multicore) grows to support per-
formance, and compiler optimization 
must bridge this widening gap. Com-
piler fundamentals are well understood 
now, but where to apply what optimiza-
tion has become increasingly difficult 
over the past few decades. Compilers 
today are set to operate with a fixed 
strategy (such as on a single function 
in a particular data context) but have 
trouble shifting gears when different 

The following agenda for the 
compiler community demands 
a broader collaboration 
between industry and academic 
institutions, as well as support 
from government funding 
agencies, to address the challenges 
discussed here. 

Enablers to facilitate collab-
orative compiler research: 

Open and extensible compiler  �
infrastructure with state-of-the-

art optimizations; 
Collections of benchmarks  �

for evaluating advances in com-
pilers and a strategy for keeping 
the benchmark collections up 
to date; and 

Methodology for measuring  �
progress and reporting results 
that encourages all publications 
to include data in repositories 
to enable other researchers to 
reproduce the results. 

Research challenges in opti-
mi zation: 

Make parallel programming  �
mainstream; 

Write compilers capable of  �
self-improvement; and 

Develop performance models  �
to support optimizations for 
parallel code.

Research challenges in cor-
rect ness: 

Enable development of soft- �

ware as reliable as an airplane; 
Enable system software that is  �

secure at all levels; and 
Verify the entire software stack.  �
Enrich computer science 

education with compiler technology: 
Expand compiler courses with  �

examples from new problem do-
mains (such as security); and 

Work with experts in other   �
domains to incorporate compiler 
algorithms into their courses. 

Collaboration, Research Challenges, Education

Agenda for the Compiler Community
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code is encountered in a global context 
(such as in any whole application). 

Kuck also said, “The best hope for 
the future is adaptive compilation that 
exploits equivalence classes based 
on ‘codelet’ syntax and optimiza-
tion potential. This is a deep research 
topic, and details are only beginning 
to emerge. Success could lead to dra-
matic performance gains and compiler 
simplifications while embracing new 
language and architecture demands.” 

Make parallel programming main-
stream. Although research in parallel 
programming began more than 30 years 
ago, parallel programming is the norm 
in only a few application areas (such as 
computational science and databases). 
These server-side applications deal 
mostly with structured data (such as ar-
rays and relations), and computations 
can be done concurrently with little syn-
chronization. In contrast, many client-
side applications deal with unstructured 
data (such as sets and graphs) and re-
quire much-finer-grain cross-processor 
synchronization. Programmers have 
few tools for coding such applications 
at a high level of abstraction without 
explicit management of parallelism, 
locality, communication, load balanc-
ing, power and energy requirements, 
and other dimensions of optimization. 
Furthermore, as parallelism becomes 
ubiquitous, performance portability of 
programs across parallel platforms and 
processor generations will be essential 
for developing productive software. 

Breakthroughs in compiler tech-
nology are essential for making paral-
lel programming mainstream. They 
will require collaboration with other 
areas, including tighter integration of 
compilers with languages, libraries, 
and runtime environments, to make 
available the semantic information 
needed to optimize programs for paral-
lel execution. The historical approach 
of “whole-program” analysis must be 
replaced with a hierarchical approach 
to software development and optimi-
zation in which code within a software 
layer is optimized without analyzing 
code in lower layers. This abstraction 
approach requires that each layer have 
a well-defined API with semantics that 
describe the information model or on-
tology of that layer (such as the Google 
map-reduce programming model). 
These semantics are used by the com-

piler to optimize software in higher lay-
ers. In the reverse direction, contextual 
information from higher layers can be 
used to specialize and optimize code at 
lower layers. 

Because guidance from the pro-
grammer is also necessary, interactive 
or semiautomatic compiler-based tools 
must also be developed. A noteworthy 
example of such an approach is a proj-
ect that used race-detection software to 
interactively parallelize the Intel IA32 
compiler.1 Interactivity may require in-
corporation of compilers into integrat-
ed development environments, rede-
signing compiler optimizations to be 
less dependent on the order in which 
the optimizations are applied, and re-
designing compiler algorithms and 
frameworks to make them more suit-
able for an interactive environment. 

The advent of just-in-time compila-
tion for languages (such as Java) blurs 
the distinction between compile time 
and runtime, opening up new opportu-
nities for program optimization based 
on dynamically computed program val-
ues. As parallel client-side applications 
emerge, runtime dependence check-
ing and optimization are likely to be 
essential for optimizing programs that 
manipulate dynamic data structures 
(such as graphs). 

Develop a rigorous approach to archi-
tecture-specific optimization. Compiler 
front ends benefited greatly from de-
velopment in the 1960s and 1970s of 
a systematic theory of lexical analysis 
and parsing based on automata theory. 
However, as mentioned in the private 
communication by David Kuck quoted 
earlier, there is no systematic approach 
for performing architecture-specific 
program optimization, thus hamper-
ing construction of parallelizing and 
optimizing compilers. Developing ef-
fective overall optimization strategies 
requires programmers be able to deal 
with a vast number of interacting trans-
formations, nonlinear objective func-
tions, and performance prediction, 
particularly if performance depends 
on input data. The program optimiza-
tion challenge is certainly difficult but 
not insurmountable. 

Recent research at a variety of in-
stitutions, including Carnegie Mellon 
University, the University of California, 
Berkeley, the University of Illinois, MIT, 
and University of Tennessee, has dem-

The most 
remarkable 
accomplishment  
by far of the 
compiler field  
is the widespread 
use of high-level 
languages. 
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performance of program alternatives, 
rather than their absolute performance. 
The literature has proposed a variety of 
parallel computing models (such as the 
Parallel Random Access Machine, or 
PRAM, model for analyzing parallel al-
gorithms and the LogP model for com-
munication), but they are too abstract to 
serve as useful targets for performance 
optimization by compilers. However, 
through interactions with the theory 
and architecture communities, new 
models that more accurately capture 
today’s multicore platforms should be 
developed. Such models could also be 
the foundation of a systematic theory of 
program parallelization and optimiza-
tion for performance, power, through-
put, and other criteria. 

Correctness and security. The abil-
ity to detect coding defects has always 
been an important mission for com-
pilers. In facilitating programming, 
high-level languages both simplified 
the representation of computations 
and helped identify common program 
errors, including undeclared variable 
uses and a range of semantic errors 
pinpointed through increasingly so-
phisticated type checking. Much more 
can and must be done with program 
analysis to help avoid incorrect results 
and security vulnerabilities. 

Regarding software security, Steve 
Lipner, senior director of security engi-
neering strategy in Microsoft’s Trustwor-
thy Computing Group, said in a private 
communication: “With the beginning 
of the Trustworthy Computing initiative 
in 2002, Microsoft began to place heavy 
emphasis on improving the security 
of its software. Program-analysis tools 
have been key to the successes of these 
efforts, allowing our engineers to detect 
and remove security vulnerabilities be-
fore products are released. Today, Micro-
soft’s engineering practices for security 
are formalized in the Security Develop-
ment Lifecycle, or SDL, which mandates 
application of program-analysis tools 
and security-enhancing options. These 
tools and compiler options are the 
product of many years of research in 
program analysis and compilers, which 
has proven invaluable in addressing the 
difficult security challenges the industry 
faces. Microsoft’s security teams eagerly 
look forward to the fruits of continued 
research in compiler technology and as-
sociated improvements in the effective-

onstrated the potential of offline em-
pirical search to tune the performance 
of application code to a specific archi-
tecture. Often called “autotuning,” this 
approach has produced results com-
petitive with hand tuning in such well-
studied domains as linear algebra and 
signal processing. The basic approach 
is that either the application program-
mer expresses or the compiler derives a 
well-defined search space of alternative 
implementations for a program that is 
then explored systematically by compil-
er and runtime tools so the optimization 
process is able to achieve results compa-
rable to hand tuning. The challenge is to 
extend the approach to parallel systems 
and multicore processors, as well as to 
integrate the technology into a coherent, 
easy-to-use system that applies to a large 
number of complex applications. 

Language and compiler technol-
ogy supporting autotuning will greatly 
facilitate the construction of libraries 
implementing numerical and symbol-
ic algorithms for a variety of domains, 
building on examples from self-tuning 
linear algebra and signal-processing 
libraries. In addition to encapsulating 
efficient algorithms that can be imple-
mented by only a handful of compiler 
experts and used by a vast number of 
nonexpert programmers, these librar-
ies can contribute to the design of fu-
ture high-level languages and abstrac-
tions by exposing new and interesting 
patterns for expressing computation. 
Furthermore, describing the character-
istics of these libraries in a machine-
usable format, such that compilers 
understand the semantic properties 
and performance characteristics of the 
library routines, will enable the imple-
mentation of interactive tools that 
analyze and make recommendations 
about the incorporation of library rou-
tines in their codes. 

An even more significant challenge is 
for compiler researchers to extend this 
approach to online tuning. Evaluating 
the performance of different versions of 
a program by running them directly on 
the native machine is unlikely to scale 
to large numbers of cores or to large 
programs, even in an offline setting. 
One strategy is for compiler researchers 
to develop tractable machine and pro-
gram abstractions to permit efficient 
evaluation of program alternatives, 
since what’s needed is only the relative 

Breakthroughs 
in compiler 
technology are 
essential to 
making parallel 
programming 
mainstream.  
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ness of the tools that we use to make our 
products more secure.” 

Tools for program correctness and 
security must avoid wasting program-
mer time with false positives without 
sacrificing reliability or security and 
must prioritize, rank, and display the 
results of the analyses. Furthermore, 
they cannot negatively affect program 
performance or ease of use. As with 
other challenges, these issues are best 
addressed through a tighter integra-
tion of compilers, languages, libraries, 
and runtime systems. In particular, we 
anticipate an important role for spe-
cialized program-analysis systems that 
involve techniques relevant to each 
particular problem domain. 

The foremost challenge in this area 
targets what traditionally is called de-
bugging. The goal is to develop engi-
neering techniques to detect and avoid 
program defects. The second challenge 
targets security risks, aiming to devel-
op strategies to detect vulnerabilities 
to external attacks. The final challenge 
is to develop automatic program-verifi-
cation techniques. 

Enable development of software as reli-
able as an airplane. Improving the quali-
ty of software by reducing the number of 
program defects drives much research 
in computer science and has a profound 
economic influence on the overall U.S. 
national economy as indicated by the 
NIST report mentioned earlier. Compil-
er technology in the form of static and 
dynamic program analysis has proved 
useful in the identification of complex 
errors, but much remains to be done. 
Extending this work demands new 
program-analysis strategies to improve 
software construction, maintenance, 
and evolution techniques, bringing the 
programming process to conform to the 
highest engineering standards (such as 
those in automotive, aeronautical, and 
electronic engineering). 

An effective strategy would likely 
involve analysis techniques, new lan-
guage features for productivity and reli-
ability, and new software-development 
paradigms. Nevertheless, at the core 
of these tools and strategies are ad-
vanced compiler and program-analysis 
techniques that guarantee consistent 
results while maintaining the overall 
quality of the code being generated, 
where metrics for quality might include 
execution time, power consumption, 

prove that it meets its specifications, 
and this proof should be checked by a 
computer program.”2 

Although program verification is 
not traditionally considered a compil-
er challenge, we include it here due to 
its potential as a formal solution to the 
two previous challenges: the interplay 
between program analysis and auto-
matic verification and growing interest 
in the verification of compilers. 

Verifying compiler code and algo-
rithms would be a good first step to-
ward addressing this challenge for two 
reasons: First, compilers contain speci-
fications of their own correctness, thus 
providing clear requirements for the 
verification process. And second, the 
verification of the code generated by 
compilers is a necessary aspect of the 
verification of software in general. Re-
cent advances in compiler verification 
anticipate a future when it will be pos-
sible to rely on formal and mechanical 
reasoning at the source level. The ulti-
mate goal is to prove that the compiler 
is extensionally correct (input-output 
preserving) and respects time, space, 
and power constraints. 

Although powerful and effective 
verification tools would make a tre-
mendous contribution to computing 
practice, the importance of program 
verification goes beyond its use in im-
proving software quality. As an example 
of a formal reasoning system, program 
verification is intellectually important 
in and of itself. It has been argued by 
researchers in machine learning that 
program verification is an ideal sub-
ject for the development of the first ad-
vanced reasoning system. After all, pro-
gramming is a subject that computer 
scientists who study reasoning systems 
really understand. 

Recommendations 
To address these challenges, the com-
piler community needs a vibrant re-
search program with participation by 
industry, national labs, and universi-
ties worldwide. Advances in compiler 
technology will require the creativity, 
enthusiasm, and energy of individual 
researchers, but given the complexity 
of compiler technology and software 
systems, long-term projects led by 
compiler specialists from industry and 
research institutions is necessary for 
success. Therefore, we offer four main 

and code size. Beyond producing more 
reliable programs, the tools resulting 
from this research will make the profes-
sion of programming more rewarding 
by enabling developers and testers alike 
to focus on the more creative aspects of 
their work. 

Enable system software that is secure 
at all levels. As with software reliabil-
ity, sophisticated program-analysis 
and transformation techniques have 
been applied in recent years to the de-
tection and prevention of software vul-
nerabilities (such as buffer overflows 
and dangling pointers) that arise from 
coding defects. There is some overlap 
between detection and prevention of 
software vulnerabilities and the previ-
ous challenge of software reliability in 
that any vulnerability can be consid-
ered a program defect. However, these 
challenges differ in that security strat-
egies must account for the possibil-
ity of external attacks in the design of 
analyses and transformations. Thus, 
certain techniques (such as system 
call authentication and protection 
against SQL injection) are unique to 
the challenge of ensuring computer 
security. 

Compilers play a critical role in en-
hancing computer security by reducing 
the occurrence of vulnerabilities due to 
coding errors and by providing program-
mers with tools that automate their 
identification and prevention. Program-
ming in languages that enforce a strong 
type discipline is perhaps the most use-
ful risk-reduction strategy. Functional 
language programs have more trans-
parent semantics than imperative lan-
guage programs, so language research-
ers have argued that the best solution to 
reducing software vulnerabilities is to 
program in functional languages, possi-
bly extended with transactions for han-
dling mutable state. 

Enable automatic verification of the 
complete software stack. Formally prov-
ing that a program conforms to a given 
specification (program verification) is a 
powerful strategy for completely avoid-
ing software defects. A manifestation 
is the longstanding recognition that 
program verification is one of the great 
challenges of computer science. More 
than 40 years ago, John McCarthy, 
then a professor of computer science 
at Stanford University, wrote: “Instead 
of debugging a program, one should 
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outperform their proprietary counter-
parts; representative input data sets 
must accompany any set of bench-
marks. Also desirable is a description 
of the algorithms and data structures 
to enable research in new program-
ming languages and extensions that 
may be better suited for expressing the 
computation. 

Federal agencies and industry must 
collaborate to establish the necessary 
funding opportunities and incentives 
that will move compiler specialists at 
universities and industry to address the 
research infrastructure and benchmark 
challenges. Funding opportunities 
should also be made available for small-
er academic studies and development 
efforts. The computer science commu-
nity has achieved notable success in 
developing novel compiler infrastruc-
tures, including: compiler front-end 
development; program-analysis frame-
works for research in compilers; verifi-
cation tools, security applications, and 
software-engineering tools; and virtual-
machine frameworks for both main-
stream and special-purpose languages. 
Even if the GNU and industry-developed 
compilers were a useful infrastructure 
for research, development of new ro-
bust, easy-to-use infrastructures by the 
researchers who need them are critical 
for future advances. Not only is it impor-
tant to support such research projects, 
the research community must recog-
nize their academic merit. 

Develop methodologies and reposito-
ries that enable the comparison of meth-
ods and reproducibility of results. The 
reproducibility of results is critical for 
comparing the strategies, machines, 
languages, and problem domains. Too 
much of the information available to-

recommendations:
Enable the creation of compiler re-

search centers. There are few large 
compiler research groups anywhere in 
the world today. At universities, such 
groups typically consist of a senior re-
searcher and a few students, and their 
projects tend to be short term, usually 
only as long as a Ph.D. project. Mean-
while, the few industrial groups study-
ing advanced compiler technology tend 
to focus on near-term solutions, even 
as the compilers, the programs they 
translate and analyze, and the target ex-
ecution environments have increased in 
complexity. The result is that too much 
of today’s compiler research focuses on 
narrow problems, ignoring the oppor-
tunity to develop revolutionary strate-
gies requiring long-term commitment 
for their development and evaluation. 

In those areas of compiler research 
seeing diminishing returns today from 
incremental approaches (such as pro-
gram analysis and optimization), re-
searchers must attempt radical new so-
lutions that are likely to be lengthy and 
involved. The compiler research com-
munity (university and industry) must 
work together to develop a few large 
projects or centers where long-term 
research projects with the support of a 
stable staff are carried out. Industry and 
funding agencies must work together to 
stimulate and create opportunities for 
the initiation of these centers. Joint in-
dustry/government funding must sup-
port the ongoing evolution and mainte-
nance of the software. 

Create significant university/industry/
government partnerships for the develop-
ment of infrastructure and the gathering 
of benchmarks while funding individual 
projects at universities and other research 

centers. Implementation and experi-
mentation are central to the compiler 
area. New techniques and tools, as well 
as new implementations of known ap-
proaches, can be meaningfully evalu-
ated only after they are incorporated 
into industrial-strength compiler in-
frastructures with state-of-the-art opti-
mizations and code-generation strate-
gies. The absence of widely accepted 
compiler research platforms has hin-
dered research efforts in compiler 
technology, design of new program-
ming languages, and development of 
optimizations for new machine archi-
tectures. The development of complete 
compilers requires an immense effort 
typically beyond the ability of a single 
research group. Source code is now 
available for the GNU compiler and for 
other compilers developed by indus-
try (such as IBM’s Java Jikes compiler, 
Intel’s Open Research Compiler, and 
Microsoft’s Phoenix framework). They 
may yet evolve into the desired infra-
structure, but none currently meets all 
the needs of the community. 

Experimental studies require 
benchmarks that are representative 
of the most important applications at 
the time of the evaluation, meaning 
the process of gathering representative 
programs is a permanent process. Nu-
merous efforts have sought to gather 
benchmarks, but the collections tend 
to be limited and are often complicat-
ed by doubts as to how representative 
they truly are. A serious difficulty is that 
many widely used programs are propri-
etary. In domains where open source 
applications might represent propri-
etary software, it would suffice for the 
purpose of evaluating compilers to 
make use of open source versions that 

Tim Burrell of Microsoft’s Secure Windows Initiative describing the Phoenix compiler and automated vulnerability finding  
at the EUSecWest conference, May 2008, London, U.K.
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day is anecdotal. In many disciplines, 
reviewers and peer scientists expect pa-
pers to include sufficient information 
so other groups are able to reproduce 
the results being obtained, but papers 
do not adequately capture compiler 
experiments where numerous imple-
mentation details determine the final 
outcome. With the help of open source 
software, the Web can be used to pub-
lish the software and data used in the 
evaluations being reported. Major 
conferences and organizations (such 
as ACM) must provide mechanisms 
for publishing software, inputs, and 
experimental data as metadata for the 
publications that report these experi-
ments. Such repositories are useful 
for measuring progress and could also 
serve as a resource to those interested 
in the history of technology. 

Develop curriculum recommenda-
tions on compiler technology. Compiler 
technology is complicated, and ad-
vances in the discipline require bright 
researchers and practitioners. Mean-
while, computer science has grown as 
a discipline with numerous exciting ar-
eas of research and studies to pursue. 
The compiler community must convey 
the importance and intellectual beauty 
of the discipline to each generation of 
students. Compiler courses must clear-
ly demonstrate to students the extraor-
dinary importance, range of applica-
bility, and internal elegance of what is 
one of the most fundamental enabling 
technologies of computer science. 

Whereas compiler technology used 
to be a core course in most under-
graduate programs, many institutions 
now offer their compiler course as an 
optional upper-level course for com-
puter science and computer engineer-
ing students and often include inter-
esting projects that deliver a capstone 
experience. A good upper-level com-
piler course combines data structures, 
algorithms, and tools for students as 
they build a large piece of software that 
performs an interesting and practical 
function. However, these courses are 
considered difficult by both faculty and 
students, and students often have oth-
er interesting choices. Thus, fewer stu-
dents are exposed to the foundational 
ideas in compilers or to compilers as a 
potential area only for graduate study. 

Compiler algorithms are of tremen-
dous educational value for anyone in-

terested in compiler implementation 
and machine design. Knowledge of 
the power and limitations of compiler 
algorithms is valuable to all users of 
compilers, debuggers, and any tool 
built using compiler algorithms that 
encapsulate many, if not most, of the 
important program-analysis and trans-
formation strategies necessary for per-
formance and correctness. Therefore, 
learning about compiler algorithms 
leads to learning about program op-
timization and typical programming 
errors in a deep and rigorous manner. 
For these reasons, programmers with a 
solid background in compilers tend to 
excel in their profession. 

One approach to promoting knowl-
edge of compiler algorithms involves 
discussion of specific compiler algo-
rithms throughout the computer sci-
ence curriculum—in automata theory, 
programming languages, computer 
architecture, algorithms, parallel pro-
gramming, and software engineering. 
The main challenge is to define the key 
compiler concepts that all computer sci-
ence majors must know and to suggest 
the content that should be included in 
core computer science courses. 

A second complementary approach 
is to develop advanced courses focus-
ing on compiler-based analyses for 
software engineering, scientific com-
puting, and security. They could as-
sume the basic concepts taught in core 
courses and move quickly into new ma-
terial (such as virus detection based on 
compiler technology). The challenge 
is how to design courses that train 
students in advanced compiler tech-
niques and apply them to areas that are 
interesting and relevant (such as soft-
ware reliability and software engineer-
ing). They may not be called “compiler 
courses” but labeled in ways that reflect 
a particular application area (such as 
computer security, verification tools, 
program-understanding tools) or per-
haps something more general like pro-
gram analysis and manipulation. 

Conclusion 
Although the compiler field has trans-
formed the landscape of computing, im-
portant compilation problems remain, 
even as new challenges (such as multi-
core programming) have appeared. The 
unsolved compiler challenges (such 
as how to raise the abstraction level of 

parallel programming, develop secure 
and robust software, and verify the en-
tire software stack) are of great practical 
importance and rank among the most 
intellectually challenging problems in 
computer science today. 

To address them, the compiler field 
must develop the technologies that en-
able more of the progress the field has 
experienced over the past 50 years. Com-
puter science educators must attract 
some of the brightest students to the 
compiler field by showing them its deep 
intellectual foundations, highlighting 
the broad applicability of compiler tech-
nology to many areas of computer sci-
ence. Some challenges facing the field 
(such as the lack of flexible and powerful 
compiler infrastructures) can be solved 
only through communitywide effort. 
Funding agencies and industry must be 
made aware of the importance and com-
plexity of the challenges and willing to 
invest long-term financial and human 
resources toward finding solutions.  
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