Introduction to

{SNTLR

By:

Morteza Zakeri

Iran University of Science and Technology
Fall 2016

Contents at a Glance |

* What is ANTLR<

o LL Grammars

* History

* Moftivation

* What is New in ANTLR v4¢

 ANTLR Components: How it Workse
» Geftting Start with ANTLR v4

17 October 2016 Introduction to ANTLR - M.Zakeri

Page 2 of 31

Contents at a Glance |

 ANTLR Hello World!

* Integrating a Generated Parser into a Java Program
» A Starter ANTLR Project: Arraylnit

 Building a Language Application

« Customizing Baselistener Methods

» Congratulation!

» References

17 October 2016 Introduction to ANTLR - M.Zakeri Page 3 of 31

What is ANTLR?

* ANTLR (pronounced Antler), or Another Tool For
Language Recognition, is a parser generator that
uses LL(*) for parsing.

* ANTLR tfakes as input a grammar that specifies a
language and generates as output source code
for a recognizer for that language.

 supported generating code in Java, C#, Javascript,
Python2 and Pythona3.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 4 of 31

LL(K) Grammars

* An LL parser is a top-down parser for a subset of
context-free languages.

o [t parses the input from Left to right, performing Lefimost
derivation of the sentence.

 An LL parseris called an LL(k) parser if it uses k
tokens of look-ahead when parsing a sentence.

* The LL(K) parser is a deterministic pushdown
automaton with the abillity fo peek on the next k
INput symbols without reading.

Introduction to ANTLR - M.Zakeri

LL(*) Grammars

* An LL parser is called an LL(*) parser (an LL-regular
parser) if it is not restricted to a finite k tokens of
look-ahead, but can make parsing decisions by
recognizing whether the following tokens belong to

a regular language.

« LL (LL(T), LL(k), LL(*)) grammars can be parsed by
recursive descent parsers.

 In fact ANTLR is recursive descent parser
Generator!

Introduction to ANTLR - M.Zakeri

History

o Initial release:
« February 1992; 24 years ago.

e Stable release:
« 45.1 /July 15, 2015; 14 months ago

e [ts maintainer is:
* Professor Terence Parr
 University of San Francisco.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 7 of 31

Motivation

* |t's widely used in academia and industry to build
all sorts of languages, tools, and frameworks.

 Twitter search uses ANTLR for query parsing, with more
than 2 billion queries a day.

« Oracle uses ANTLR within the SQL Developer IDE and its
migration tools.

 The NetBeans IDE parses C++ with ANTLR.

 The HQL language in the Hibernate object-relational
mapping framework is built with ANTLR.

Introduction to ANTLR - M.Zakeri

What is New in ANTLR v4? |

* The most important new feature is:
* ANTLR v4 gladly accepts every grammar you give if!
* With one exception regarding indirect left recursion, i.e.
grammars rules x which refer to y which refer to x.

 ANTLR v4 automatically rewrites left-recursive rules
such as expr info non left-recursive equivalents.

* The only constraint is that the left recursion must be
direct, where rules immediately reference themselves.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 9 of 31

What is New in ANTLR v4? Il

* ANTLR v4 dramatically simplifies the grammar rules
used to match syntactic structures.

e [ike programming language arithmetic expressions.

expr : expr '*' expr // match subexpressions jolned with '*' operator
| expr '+' expr // match subexpressions joined with '+' operator
| INT // matches simple integer atom

* ANTLR v4 also automatically generates parse-tree
walkers in the form of listfener and visitor pattern
Implementations.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 10 of 31

What is New in ANTLR v4? |l

* ANTLR v4 de-emphasizes embedding actions
(code) in the grammar, favoring listeners and
visitors instead.

o Listeners and visifors are the familiar design patterns.

* ANTLR parsers use a new parsing technology
called Adaptive LL(*) or ALL(*) (“all star”).

« ANTLR v3’s LL(*) parsing strategy is weaker than v4's
ALL(%).

17 October 2016 Introduction to ANTLR - M.Zakeri Page 11 of 31

ANTLR Components: How it Works?

ANTLR Input
Grammar - Jqul Toxt
(*.94 ormplier (.tx1)

* java & *.token 7 *.class
Generated Qur The
Code J Compiler Result
- nd
ANTLR runtime ==
(parse-time) -
ANTLR jar file AP|

17 October 2016 Introduction to ANTLR - M.Zakeri Page 12 of 31

Getting Start with ANTLR v4: Linux

LINUX

$ cd fusr/local/lib

$ wget http://www._antlr.org/download/antlr-4.5.3-complete.jar

% export CLASSPATH=".:/usr/local/lib/fantlr-4.5_3-
complete.jar:5CLAS5PATH"

$ alias antlrd="java -jar fusr/local/lib/antlr-4.5_3-complete.jar’
$ alias grun="java org.antlr.v4 gui.TestRig’

17 October 2016 Introduction to ANTLR - M.Zakeri Page 13 of 31

Getting Start with ANTLR v4: Windows

Windows
1. Download http://antlr.org/download/antlr-4.5_3-complete. jar.
2. Add antlrd-complete_jar to CLASSPATH, either:
1. Permanently: Using System Properties dialog > Environment variables =

Create or append to CLAS5PATH variable

2. Temporarily, at command line:

SET CLASSPATH=.;C:‘Javalib\antlrd-
complete. jar;%CLASSPATHS:

3. Create batch commands for ANTLR Tool, TestRig in dir in PATH

antlrd_bat: java org.antlr.v4._Tool %*
grun.bat: java org.antlr.v4d _gui.TestRig %*

17 October 2016 Introduction to ANTLR - M.Zakeri Page 14 of 31

ANTLR Hello World!

ff Define a grammar called Hello
grammar Hello;

g2 ! '"hello' ID ; S match keyword hello followed by an identifier
ID : [a-zk-Z]+ ; S f match +ewer—ease identifiers
W5 : [\t\r\n]l+ -> =skip; /S skip s=spaces, tabs, newlines

$ antlrd4 Hello.g4
$ javac Hello*.java

$ grun Hello r -tree

hello World
~a

17 October 2016 Introduction to ANTLR - M.Zakeri Page 15 of 31

ANTLR Hello World!

@ Parse Tree Inspector W
hello : S
World /\
|hello World
]
OK Export as PNG

17 October 2016 Introduction to ANTLR - M.Zakeri Page 16 of 31

Do all with my own bat File!

2 Jawva —jar C:\Javalib‘antlr—-4.5.3-complete.jar *.g4

2 Javac —cp C:\Javaliblantlr-4.5.3-complete.jar *.java
4

5 =et /P id=Enter Grammar Name:

& =set /P 1d2=Enter Start rule name:

Jjava —cp .;C:\Javalibl\antlr-4.5.3-complete.jar org.antlr.v4.gui.TestRig %id% %id2% in.txt —-tree —gui

(mn]

=z=et /P 1d2=Pre=s= any key ...

17 October 2016 Introduction to ANTLR - M.Zakeri Page 17 of 31

Integrating a Generated Parser into a
Java Program

« We can integrate the ANTLR generated code into
a larger application.

 We'll see simple example in next slides for
recognition structures like {1,{2,3},4} in C or JAVA.

* Then we'll look at a simple Java main() that

iInvokes our initializer parser and prints out the parse
tree like TestRIg's -free opftion.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 18 of 31

A Starter ANTLR Project: Arraylnit

J** Grammars always start with a grammar header. This grammar is called
* ArrayInit and must match the filename: ArrayInit.g4
*/

grammar ArrayInit;

J** A rule called init that matches comma-separated values between {...}. */

init : '{" value ('," value)* '}' : s/ must match at least one value

J** A value can be either a nested array/struct or a simple integer (INT) */
value : init
| INT

r

J// parser rules start with lowercase letters, lexer rules with uppercase
INT : [B-9]+ ; J// Define token INT as one or more digits
Ws [\vtyrvnl+ -= skip ; // Define whitespace rule, toss it out

17 October 2016 Introduction to ANTLR - M.Zakeri Page 19 of 31

A Starter ANTLR Project: Arraylnit

Arraylnit.gd

grammar Arraylnit;
init : "{" value (*," valuel®"}" ;
value : init

| INT

INT - [0-5]+ :
WS [Wnl+ -= skip;

I

17 October 2016

D ONTLR)

Introduction to ANTLR - M.Zakeri

ArraylnitParser.java |

ArraylnitLexer.jm

Arraylnit.tﬂke‘a

] i N
ArraylnitLexer.tokens

ArraylnitListener.java

ArraylnitBaselistener.java

Page 20 of 31

A Starter ANTLR Project: Arraylnit

// Import ANTLR's runtime libraries
import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;

public class Test {
public static void main(String[] args) throws Exception {
// create a CharStream that reads from standard input
ANTLRInputStream input = new ANTLRInputStream(System.in);

// create a lexer that feeds off of input CharStream
ArrayInitlexer lexer = new ArrayInitlLexer(input);

// create a buffer of tokens pulled from the lexer
CommonTokenStream tokens = new CommonTokenStream(lexer);

// create a parser that feeds off the tokens buffer
ArrayInitParser parser = new ArrayInitParser(tokens);

Parselree tree = parser.init(); // begin parsing at init rule
System.out.println(tree.toStringTree(parser)); // print LISP-style tree

17 October 2016 Introduction to ANTLR - M.Zakeri Page 21 of 31

A Starter ANTLR Project: Arraylnit

* Here's how to compile everything and run Test:

=» $ javac ArrayInit*.java Test.java
= § java Test

» {1,{2,3}.4}
= Eo
€ (init { (value 1) , (value (init { (value 2) , (value 3) })) , (value 4) })

17 October 2016 Introduction to ANTLR - M.Zakeri Page 22 of 31

A Starter ANTLR Project: Arraylnit

* ANTLR parsers also automatically report and
recover from syntax errors.

* For example, here’s what happens it we enter an
iInitializer that’s missing the final curly brace:

= % java Test

E}EQF
€ line 2:0 missing '}' at '<EOF>'
(init { (value 1) , (value 2) <missing '}'=>)

17 October 2016 Introduction to ANTLR - M.Zakeri Page 23 of 31

Building a Language Application |

* An application that merely checks syntax is noft
that impressive!

« Continuing with our array initializer example, our
next goal is to translate not just recognize
Initializers.

* For example, let's translate Java short arrays like
{99,3,451} 1o "\u0063\U0003\UO1c3" where 63 is the
hexadecimal representation of the 99 decimal.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 24 of 31

Building a Language Application I

* TO move beyond recognition, an application has
to extract data from the parse tree.

 ANTLR automatically generates a listener infrastructure
for us.

* These listeners are like the callbacks on GUI widgets
(for example, a button would noftify us upon a button
press) or like SAX events in an XML parser.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 25 of 31

Building a Language Application Il

* TO write a program that reacts to the input, all we
have to do is implement a few methods in ©
subclass of ArraylnitBaselistener.

* The basic strategy is 1o have each listener method print
out a franslated piece of the input when called to do
so by the tree walker.

« All we know is that our listener gets notified at the
beginning and end of phrases associated with rules in
the grammar and we don't even have to know that the
runtime is walking a tree to call our methods.

17 October 2016 Introduction to ANTLR - M.Zakeri Page 26 of 31

Customizing BaseListener Methods

/** Convert short array Inits like {1,2,3} to "\u@@@1\uBee2\u@EO3" */
public class ShortToUnicodeString extends ArrayInitBaselListener {
/** Translate { to " */

@verride

public void enterInit(ArrayInitParser.InitContext ctx) {
System.out.print("""');

by

/*¥ Translate } to " */
@verride
public void exitInit(ArrayInitParser.InitContext ctx) {

System.out.print('"");
¥

/** Translate integers to 4-digit hexadecimal strings prefixed with \\u */
@verride

public void enterValue(ArrayInitParser.ValueContext ctx) {
J/ Assumes no nested array initializers

int value = Integer.valueOf(ctx.INT().getText());
System.out.printf (" |u%04x", value);

h

17 October 2016 Introduction to ANTLR - M.Zakeri Page 27 of 31

Language Application Main Class

// Import ANTLR's runtime libraries
import org.antlr.v4.runtime.*;
import org.antlr.v4.runtime.tree.*;

public class Translate {

public static void main(String[] args) throws Exception {
// create a CharStream that reads from standard Input
ANTLRInputStream input = new ANTLRInputStream(System.in);
J/ create a lexer that feeds off of Input CharStream
ArrayInitlLexer lexer = new ArrayInitLexer(input);
J/ create a buffer of tokens pulled from the lexer
CommonTokenStream tokens = new CommonTokenStream(lexer):
// create a parser that feeds off the tokens buffer
ArrayInitParser parser = new ArrayInitParser(tokens);

YYYYY

Parselree tree = parser.init(); // begin parsing at init rule

// Create a generic parse tree walker that can trigger callbacks
ParselTreeWalker walker = new ParselreeWalker();

// Walk the tree created during the parse, trigger callbacks
walker.walk(new ShortToUnicodeString(), tree);
System.out.println(); // print a \n after translation

17 October 2016 Introduction to ANTLR - M.Zakeri

Page 28 of 31

Run and Test!

 Let’s build the translator and fry it on our sample
INpUT:

=» $ javac ArrayInit*.java Translate.java
#» % java Translate

=» {99, 3, 451}

— Foy

€ "\ube63\ueee3\ublc3"

17 October 2016 Introduction to ANTLR - M.Zakeri Page 29 of 31

Congratulation!

* |t works! We've just built our first franslator, without
even touching the grammar!

« All we had to do was implement a few methods
that printed the appropriate phrase translations.

* Listeners effectively isolate the language
application from the grammar, making the
grammar reusable for other applications.

Introduction to ANTLR - M.Zakeri

References

1. The Definitive ANTLR 4 Reference
» Terence Parr, The Pragmatic Programmers, LLC; 2012.

2. ANTLR 4 Official Website:
« Nifp://www.anftlr.org/

3. ANTLR page on Wikipedia
« https://en.wikipedia.org/wiki/ANTLR

17 October 2016 Introduction to ANTLR - M.Zakeri Page 31 of 31

http://www.antlr.org/
https://en.wikipedia.org/wiki/ANTLR

lihank'you for your attention!

