
Reverse Compilation Techniques

by

Cristina Cifuentes

Bc�App�Sc � Computing Honours� QUT ������
Bc�AppSc � Computing� QUT ���	��

Submitted to the School of Computing Science
in partial ful
lment of the requirements for the degree of

Doctor of Philosophy

at the

QUEENSLAND UNIVERSITY OF TECHNOLOGY

July ����

c� Cristina Cifuentes� ����

The author hereby grants to QUT permission to reproduce and
to distribute copies of this thesis document in whole or in part�

ii

Statement of Original Authorship

The work contained in this thesis has not been previously submitted for a degree or diploma
at any other higher education institution� To the best of my knowledge and belief� the thesis
contains no material previously published or written by another person except where due
reference is made�

Signed �

Date �

iii

QUEENSLAND UNIVERSITY OF TECHNOLOGY
DOCTOR OF PHILOSOPHY THESIS EXAMINATION

CANDIDATE NAME Cristina Nicole Cifuentes

CENTRE�RESEARCH CONCENTRATION Programming Languages and Systems

PRINCIPAL SUPERVISOR Professor K J Gough

ASSOCIATE SUPERVISOR Professor W J Caelli

THESIS TITLE Reverse Compilation Techniques

Under the requirements of PhD regulation ��� the above candidate was examined orally
by the Faculty� The members of the panel set up for this examination recommend that
the thesis be accepted by the University and forwarded to the appointed Committee for
examination�

Name � Signature �
Panel Chairperson �Principal Supervisor�

Name � Signature �
Panel Member

Name � Signature �
Panel Member

����������

Under the requirements of PhD regulation ����� it is hereby certi
ed that the thesis of the
above�named candidate has been examined� I recommend on behalf of the Examination
Committee that the thesis be accepted in ful
lment of the conditions for the award of the
degree of Doctor of Philosophy�

Name � Signature �
Examination Committee Chairperson

Date �

v

Reverse Compilation Techniques

by

Cristina Cifuentes

Abstract

Techniques for writing reverse compilers or decompilers are presented in this thesis� These
techniques are based on compiler and optimization theory� and are applied to decompilation
in a unique way� these techniques have never before been published�

A decompiler is composed of several phases which are grouped into modules dependent on
language or machine features� The front�end is a machine dependent module that parses
the binary program� analyzes the semantics of the instructions in the program� and gen�
erates an intermediate low�level representation of the program� as well as a control �ow
graph of each subroutine� The universal decompiling machine is a language and machine
independent module that analyzes the low�level intermediate code and transforms it into a
high�level representation available in any high�level language� and analyzes the structure of
the control �ow graph�s� and transform them into graphs that make use of high�level con�
trol structures� Finally� the back�end is a target language dependent module that generates
code for the target language�

Decompilation is a process that involves the use of tools to load the binary program into
memory� parse or disassemble such a program� and decompile or analyze the program to
generate a high�level language program� This process bene
ts from compiler and library
signatures to recognize particular compilers and library subroutines� Whenever a compiler
signature is recognized in the binary program� all compiler start�up and library subroutines
are not decompiled� in the former case� the routines are eliminated from the
nal target
program and the entry point to the main program is used for the decompiler analysis� in
the latter case the subroutines are replaced by their library name�

The presented techniques were implemented in a prototype decompiler for the Intel i	�	�
architecture running under the DOS operating system� dcc� which produces target C pro�
grams for source �exe or �com
les� Sample decompiled programs� comparisons against the
initial high�level language program� and an analysis of results is presented in Chapter ��

Chapter � gives an introduction to decompilation from a compiler point of view� Chap�
ter gives an overview of the history of decompilation since its appearance in the early
����s� Chapter � presents the relations between the static binary code of the source binary
program and the actions performed at run�time to implement the program� Chapter � de�
scribes the phases of the front�end module� Chapter � de
nes data optimization techniques
to analyze the intermediate code and transform it into a higher�representation� Chapter �
de
nes control structure transformation techniques to analyze the structure of the control
�ow graph and transform it into a graph of high�level control structures� Chapter � describes
the back�end module� Chapter 	 presents the decompilation tool programs� Chapter � gives
an overview of the implementation of dcc and the results obtained� and Chapter �� gives
the conclusions and future work of this research�

vi

Parts of this thesis have been published or have been submitted to international jour�
nals� Two papers were presented at the XIX Conferencia Latinoamericana de Inform�atica
in ����� �A Methodology for Decompilation��CG���� and �A Structuring Algorithm for
Decompilation��Cif���� The former paper presented the phases of the decompiler as de�
scribed in Chapter �� Section ���� the front�end �Chapter ��� initial work on the control �ow
analysis phase �Chapter ��� and comments on the work done with dcc� The latter paper
presented the structuring algorithms used in the control �ow analysis phase �Chapter ���
One journal paper� �Decompilation of Binary Programs��CG���� has been accepted for pub�
lication by Software � Practice � Experience� this paper gives an overview of the techniques
used to build a decompiler �summaries of Chapters �� �� �� and ��� how a signature gen�
erator tool can help in the decompilation process �Chapter 	� Section 	��� and a sample
decompiled program by dcc �Chapter ��� Two papers are currently under consideration for
publication in international journals� �Interprocedural Data Flow Decompilation��Cif��a�
was submitted to the Journal of Programming Languages and describes in full the opti�
mizations performed by the data �ow analyzer to transform the low�level intermediate code
into a high�level representation� �Structuring Decompiled Graphs��Cif��b� was submitted
to The Computer Journal and gives the
nal� improved method of structuring control �ow
graphs �Chapter ��� and a sample decompiled program by dcc �Chapter ���

The techniques presented in this thesis expand on earlier work described in the literature�
Previous work in decompilation did not document on the interprocedural register analysis
required to determine register arguments and register return values� the analysis required to
eliminate stack�related instructions �i�e� push and pop�� or the structuring of a generic set of
control structures� Innovative work done for this research is described in Chapters �� �� and
	� Chapter �� Sections �� and ��� illustrate and describe nine di�erent types of optimiza�
tions that transform the low�level intermediate code into a high�level representation� These
optimizations take into account condition codes� subroutine calls �i�e� interprocedural anal�
ysis� and register spilling� eliminating all low�level features of the intermediate instructions
�such as condition codes and registers� and introducing the high�level concept of expressions
into the intermediate representation� Chapter �� Sections �� and ��� illustrate and describe
algorithms to structure di�erent types of loops and conditional� including multi�way branch
conditionals �e�g� case statements�� Previous work in this area has concentrated in the
structuring of loops� few papers attempt to structure �way conditional branches� no work
on multi�way conditional branches is described in the literature� This thesis presents a
complete method for structuring all types of structures based on a predetermined� generic
set of high�level control structures� A criterion for determining the generic set of control
structures is given in Chapter �� Section ���� Chapter 	 describes all tools used to decompile
programs� the most important tool is the signature generator �Section 	�� which is used to
determine compiler and library signatures in architectures that have an operating system
that do not share libraries� such as the DOS operating system�

vii

Acknowledgments

The feasibility of writing a decompiler for a contemporary machine architecture was raised
by Professors John Gough and Bill Caelli in the early ����s� Since this problem appeared
to provide a challenge in the areas of graph and data �ow theory� I decided on pursuing a
PhD with the aim at determining techniques for the reverse compilation of binary programs�
This thesis is the answer to the many questions asked about how to do it� and yes� it is
feasible to write a decompiler�

I would like to acknowledge the time and resources provided by a number of people in
the computing community� Professor John Gough provided many discussions on data �ow
analysis� and commented on each draft chapter of this thesis� Sylvia Willie lent me a PC
and an o�ce in her lab in the initial stages of this degree� Pete French provided me with
an account on a Vax BSD �� machine in England to test a Vax decompiler available on
the network� Je� Ledermann rewrote the disassembler� Michael Van Emmerik wrote the
library signature generator program� generated compiler and library signatures for several
PC compilers� ported dcc to the DOS environment� and wrote the interactive user interface
for dcc� Jinli Cao translated a Chinese article on decompilation to English while studying
at QUT� Geo� Olney proof�read each chapter� pointed out inconsistencies� and suggested
the layout of the thesis� I was supported by an Australian Postgraduate Research Award
�APRA� scholarship during the duration of this degree�

Je� Ledermann and Michael Van Emmerik were employed under Australian Research Coun�
cil ARC grant No� A��������

This thesis was written with the LaTEX document preparation system� All
gures were
produced with the x
g facility for interactive generation of
gures under X���

Cristina Cifuentes
June ����

The author acknowledges that any Trade Marks� Registered Names� or Proprietary Terms used in

this thesis are the legal property of their respective owners�

Contents

� Introduction to Decompiling �
��� Decompilers �
�� Problems �

���� Recursive Undecidability �
��� The von Neumann Architecture �
���� Self�modifying code �
���� Idioms �
���� Virus and Trojan �tricks� �
���� Architecture�dependent Restrictions �
���� Subroutines included by the compiler and linker � � � � � � � � � � � � �

��� The Phases of a Decompiler �
����� Syntax Analysis � 	
���� Semantic Analysis �
����� Intermediate Code Generation ��
����� Control Flow Graph Generation ��
����� Data Flow Analysis ��
����� Control Flow Analysis ��
����� Code Generation ��

��� The Grouping of Phases �
��� The Context of a Decompiler ��
��� Uses of Decompilation ��

����� Legal Aspects ��

� Decompilation � What has been done� ��
�� Previous Work ��

� Run�time Environment ��
��� Storage Organization ��

����� The Stack Frame ��
�� Data Types ��

���� Data Handling in High�level Languages � � � � � � � � � � � � � � � � � ��
��� High�Level Language Interface ��

����� The Stack Frame ��
���� Parameter Passing �	

��� Symbol Table ��
����� Data Structures ��

x CONTENTS

	 The Front�end 	�
��� Syntax Analysis ��

����� Finite State Automaton ��
���� Finite State Automatons and Parsers � � � � � � � � � � � � � � � � � � ��
����� Separation of Code and Data ��

�� Semantic Analysis ��
���� Idioms ��
��� Simple Type Propagation ��

��� Intermediate Code Generation ��
����� Low�level Intermediate Code �	
���� High�level Intermediate Code ��

��� Control Flow Graph Generation ��
����� Basic Concepts ��
���� Basic Blocks ��
����� Control Flow Graphs ��

 Data Flow Analysis ��
��� Previous Work � 	�

����� Elimination of Condition Codes � 	�
���� Elimination of Redundant Loads and Stores � � � � � � � � � � � � � � 	�

�� Types of Optimizations � 	�
���� Dead�Register Elimination � 	�
��� Dead�Condition Code Elimination � 	�
���� Condition Code Propagation � 	�
���� Register Arguments � 		
���� Function Return Register�s� 		
���� Register Copy Propagation � 	�
���� Actual Parameters ��
���	 Data Type Propagation Across Procedure Calls � � � � � � � � � � � � ��
���� Register Variable Elimination �

��� Global Data Flow Analysis �
����� Data Flow Analysis De
nitions �
���� Taxonomy of Data Flow Problems ��
����� Solving Data Flow Equations ��

��� Code�improving Optimizations ��
����� Dead�Register Elimination ��
���� Dead�Condition Code Elimination ���
����� Condition Code Propagation ���
����� Register Arguments ��	
����� Function Return Register�s� ���
����� Register Copy Propagation ���
����� Actual Parameters ���
����	 Data Type Propagation Across Procedure Calls � � � � � � � � � � � � ���
����� Register Variable Elimination ���
������ An Extended Register Copy Propagation Algorithm � � � � � � � � � � ��	

��� Further Data Type Propagation ��

CONTENTS xi

� Control Flow Analysis ���
��� Previous Work ��

����� Introduction of Boolean Variables ��
���� Code Replication ��
����� Multilevel Exit Loops and Other Structures � � � � � � � � � � � � � � ��
����� Graph Transformation System ��

�� Graph Structuring ��
���� Structuring Loops ��
��� Structuring Conditionals �	

��� Control Flow Analysis ���
����� Control Flow Analysis De
nitions ���
���� Relations ���
����� Interval Theory ���
����� Irreducible Flow Graphs ���

��� High�Level Language Control Structures ���
����� Control Structures � Classi
cation ���
���� Control Structures in �rd Generation Languages � � � � � � � � � � � � ��	
����� Generic Set of Control Structures ���

��� Structured and Unstructured Graphs ���
����� Loops ���
���� Conditionals ��
����� Structured Graphs and Reducibility ���

��� Structuring Algorithms ���
����� Structuring Loops ���
���� Structuring �way Conditionals ���
����� Structuring n�way Conditionals ���
����� Application Order ���

� The Back�end ���
��� Code Generation ���

����� Generating Code for a Basic Block ���
���� Generating Code from Control Flow Graphs � � � � � � � � � � � � � � ���
����� The Case of Irreducible Graphs ��	

� Decompilation Tools ���
	�� The Loader �	
	� Signature Generator �	�

	��� Library Subroutine Signatures �	�
	�� Compiler Signature �	�
	��� Manual Generation of Signatures �	�

	�� Library Prototype Generator �		
	�� Disassembler �	�
	�� Language Independent Bindings ���
	�� Postprocessor ���

xii CONTENTS

 dcc �

��� The Loader ���
�� Compiler and Library Signatures ��	

���� Library Prototypes ���
��� The Front�end ���

����� The Parser ���
���� The Intermediate Code �
����� The Control Flow Graph Generator ��
����� The Semantic Analyzer ��

��� The Disassembler ��
��� The Universal Decompiling Machine ��

����� Data Flow Analysis ��
���� Control Flow Analysis �

��� The Back�end �
����� Code Generation ��

��� Results ��
����� Intops�exe ��
���� Byteops�exe ��
����� Longops�exe �
����� Benchsho�exe ��
����� Benchlng�exe �
����� Benchmul�exe ��
����� Benchfn�exe ��
����	 Fibo�exe ��
����� Crc�exe �	
������ Matrixmu ��
������ Overall Results � 	�

�� Conclusions ��

A i���� � i����� Architecture ��
A�� Instruction Format ��
A� Instruction Set �

B Program Segment Pre�x ���

C Executable File Format ��

C�� �exe Files ���
C� �com Files ���

D Low�level to High�level Icode Mapping ���

E Comments and Error Messages displayed by dcc ���

F DOS Interrupts ���

Bibliography ���

List of Figures

��� A Decompiler �
�� Turing Machine Representation �
��� Sample self�modifying Code �
��� Sample Idioms �
��� Modify the return address �
��� Self�modifying Code Virus �
��� Self�encrypting Virus �
��	 Self�generating Virus �
��� Architecture�dependent Problem �
���� Phases of a Decompiler � 	
���� Parse tree for cx �� cx � �� 	
��� Generic Constructs ��
���� Decompiler Modules �
���� A Decompilation System ��

��� General Format of a Binary Program ��
�� Skeleton Code for a �hello world� Program �
��� The Stack Frame ��
��� The Stack Frame ��
��� Size of Di�erent Data Types in the i	�	� ��
��� Register Conventions for Return Values ��
��� Return Value Convention �	
��	 Register Parameter Passing Convention ��
��� Unordered List Representation ��
���� Ordered List Representation ��
���� Hash Table Representation ��
��� Symbol Table Representation �

��� Phases of the Front�end ��
�� Interaction between the Parser and Semantic Analyzer � � � � � � � � � � � � ��
��� Components of a FSA Transition Diagram ��
��� FSA example ��
��� Sample Code for a �hello world� Program ��
��� Counter�example �	
��� Initial Parser Algorithm ��
��	 Final Parser Algorithm ��
��� Interaction of the Semantic Analyzer �	
���� High�level Subroutine Prologue �	
���� Register Variables �	
��� Subroutine Trailer Code ��
���� C Calling Convention � Uses pop ��

xiv LIST OF FIGURES

���� C Calling Convention � Uses add ��
���� Pascal Calling Convention ��
���� Long Addition ��
���� Long Subtraction ��
���	 Long Negation ��
���� Shift Long Variable Left by �
��� Shift Signed Long Variable Right by �
��� Shift Unsigned Long Variable Right by �
�� Assign Zero ��
��� Shift Left by n ��
��� Bitwise Negation ��
��� Sign Determination According to Conditional Jump � � � � � � � � � � � � � � ��
��� Long Conditional Graphs ��
��� Long Equality Boolean Conditional Code ��
��	 Long Non�Equality Boolean Conditional Code � � � � � � � � � � � � � � � � � �	
��� Interaction of the Intermediate Code Generator � � � � � � � � � � � � � � � � �	
���� Low�level Intermediate Instructions � Example � � � � � � � � � � � � � � � � � ��
���� General Representation of a Quadruple ��
��� General Representation of a Triplet ��
���� Interaction of the Control Flow Graph Generator � � � � � � � � � � � � � � � ��
���� Sample Directed� Connected Graph ��
���� Node Representation of Di�erent Types of Basic Blocks � � � � � � � � � � � � ��
���� Control Flow Graph for Example �� ��
���� Basic Block De
nition in C ��

��� Context of the Data Flow Analysis Phase � 	�
�� Sample Flow Graph � 	�
��� Flow graph After Code Optimization ��
��� Data Flow Analysis Equations ��
��� Data Flow Problems � Summary ��
��� Live Register Example Graph ��
��� Flow Graph Before Optimization ���
��	 Dead Register Elimination Algorithm ���
��� Update of du�chains ���
���� Dead Condition Code Elimination Algorithm � � � � � � � � � � � � � � � � � � ���
���� Condition Code Propagation Algorithm ��	
��� BNF for Conditional Expressions ��	
���� Register Argument Algorithm ���
���� Function Return Register�s� ��
���� Register Copy Propagation Algorithm ���
���� Expression Stack ���
���� Potential High�Level Instructions that De
ne and Use Registers � � � � � � � ��	
���	 Extended Register Copy Propagation Algorithm � � � � � � � � � � � � � � � � ��
���� Matrix Addition Subroutine �

��� Context of the Control Flow Analysis Phase � � � � � � � � � � � � � � � � � � ��
�� Sample Control Flow Graph ��

LIST OF FIGURES xv

��� Post�tested Loop �	
��� Pre�tested Loop �	
��� �way Conditional Branching ��
��� Single Branch Conditional ��
��� Compound Conditional Branch ���
��	 Interval Algorithm ��
��� Intervals of a Graph ���
���� Derived Sequence Algorithm ���
���� Derived Sequence of a Graph ���
��� Canonical Irreducible Graph ���
���� High�level Control Structures ���
���� Control Structures Classes Hierarchy ��	
���� Classes of Control Structures in High�Level Languages � � � � � � � � � � � � ���
���� Structured Loops ���
���� Sample Unstructured Loops ��
���	 Structured �way Conditionals ���
���� Structured ��way Conditional ���
��� Abnormal Selection Path ���
��� Unstructured ��way Conditionals ���
�� Graph Grammar for the Class of Structures DRECn � � � � � � � � � � � � � � ���
��� Intervals of the Control Flow Graph of Figure �� � � � � � � � � � � � � � � � ���
��� Derived Sequence of Graphs G� � � �G� ���
��� Loop Structuring Algorithm ��	
��� Multiexit Loops � � Cases ���
��� Algorithm to Mark all Nodes that belong to a Loop induced by �y� x� � � � � ���
��	 Algorithm to Determine the Type of Loop ���
��� Algorithm to Determine the Follow of a Loop � � � � � � � � � � � � � � � � � ��
���� Control Flow Graph with Immediate Dominator Information � � � � � � � � � ���
���� �way Conditional Structuring Algorithm ���
��� Compound Conditional Graphs ���
���� Subgraph of Figure �� with Intermediate Instruction Information � � � � � � ���
���� Compound Condition Structuring Algorithm � � � � � � � � � � � � � � � � � � ���
���� Unstructured n�way Subgraph with Abnormal Exit � � � � � � � � � � � � � � ��	
���� Unstructured n�way Subgraph with Abnormal Entry � � � � � � � � � � � � � ��	
���� n�way Conditional Structuring Algorithm ���
���	 Unstructured Graph ���
���� Multientry Loops � � Cases ���
���� Canonical Irreducible Graph with Immediate Dominator Information � � � � ���

��� Relation of the Code Generator with the UDM � � � � � � � � � � � � � � � � � ���
�� Sample Control Flow Graph After Data and Control Flow Analyses � � � � � ���
��� Abstract Syntax Tree for First Instruction of B� � � � � � � � � � � � � � � � � ���
��� Algorithm to Generate Code from an Expression Tree � � � � � � � � � � � � � ���
��� Algorithm to Generate Code from a Basic Block � � � � � � � � � � � � � � � � ���
��� Control Flow Graph with Structuring Information � � � � � � � � � � � � � � � ��	
��� Algorithm to Generate Code for a Loop Header Rooted Graph � � � � � � � � ���
��	 Algorithm to Generate Code for a �way Rooted Graph � � � � � � � � � � � � ���

xvi LIST OF FIGURES

��� Algorithm to Generate Code for an n�way Rooted Graph � � � � � � � � � � � ���
���� Algorithm to Generate Code for ��way� Call� and Fall Rooted Graphs � � � � ���
���� Algorithm to Generate Code from a Control Flow Graph � � � � � � � � � � � ���
��� Algorithm to Generate Code from a Call Graph � � � � � � � � � � � � � � � � ���
���� Final Code for the Graph of Figure �� ��	
���� Canonical Irreducible Graph with Structuring Information � � � � � � � � � � ���

	�� Decompilation System �	�
	� General Format of a Binary Program �	
	�� Loader Algorithm �	�
	�� Partial Disassembly of Library Function fseek�� � � � � � � � � � � � � � � � � �	�
	�� Signature for Library Function fseek�� �	�
	�� Signature Algorithm �	�
	�� Disassembler as part of the Decompiler ���

��� Structure of the dcc Decompiler ���
�� Main Decompiler Program ���
��� Program Information Record ��	
��� Front�end Procedure ��
��� Procedure Record ��
��� Machine Instructions that Represent more than One Icode Instruction � � � � �
��� Low�level Intermediate Code for the i	�	� ��
��� Low�level Intermediate Code for the i	�	� � Continued � � � � � � � � � � � � ��
��� Low�level Intermediate Code for the i	�	� � Continued � � � � � � � � � � � � ��
��	 Basic Block Record �	
��� Post�increment or Post�decrement in a Conditional Jump � � � � � � � � � � � ��
���� Pre Increment�Decrement in Conditional Jump � � � � � � � � � � � � � � � � ��
���� Procedure for the Universal Decompiling Machine � � � � � � � � � � � � � � � ��
��� Back�end Procedure ��
���� Bundle Data Structure De
nition ��
���� Intops�a ��
���� Intops�b ��
���� Intops�c �	
���� Intops Statistics �	
���	 Byteops�a �
���	 Byteops�a � Continued �
���� Byteops�b �
��� Byteops�c �
��� Byteops Statistics �
�� Longops�a �
�� Longops�a � Continued �
�� Longops�a � Continued �
�� Longops�a � Continued � 	
�� Longops�a � Continued �
�� Longops�a � Continued ��
��� Longops�b ��
��� Longops�b � Continued �

LIST OF FIGURES xvii

��� Longops�b � Continued ��
��� Longops�c ��
��� Longops Statistics ��
��� Control Flow Graph for Boolean Assignment � � � � � � � � � � � � � � � � � � ��
��� Benchsho�a ��
��� Benchsho�a � Continued �	
��� Benchsho�a � Continued ��
��	 Benchsho�b ��
��� Benchsho�c ��
���� Benchsho Statistics ��
���� Benchlng�a ��
���� Benchlng�a � Continued ��
���� Benchlng�a � Continued ��
���� Benchlng�a � Continued ��
���� Benchlng�a � Continued ��
��� Benchlng�b �	
��� Benchlng�b � Continued ��
���� Benchlng�c ��
���� Benchlng Statistics ��
���� Benchmul�a �
���� Benchmul�a � Continued ��
���� Benchmul�b ��
���� Benchmul�c ��
���	 Benchmul Statistics ��
���� Benchfn�a ��
���� Benchfn�a � Continued �	
���� Benchfn�a � Continued ��
���� Benchfn�b ��
���� Benchfn�b � Continued ��
���� Benchfn�c �
��� Benchfn Statistics �
���� Fibo�a ��
���� Fibo�a � Continued ��
���� Fibo�b ��
���� Fibo�c ��
���� Fibo Statistics ��
���� Crc�a ��
���� Crc�a � Continued ��
���� Crc�a � Continued ��
���� Crc�a � Continued �
���	 Crc�b ��
���	 Crc�b � Continued ��
���	 Crc�b � Continued ��
���� Crc�c ��
���� Crc�c � Continued ��
���� Crc�c � Continued �	
���� Crc Statistics �	

xviii LIST OF FIGURES

���� Matrixmu�a � 	�
���� Matrixmu�a � Continued � 	�
��� Matrixmu�b � 	
���� Matrixmu�c � 	�
���� Matrixmu Statistics � 	�
���� Results for Tested Programs � 	�

A�� Register Classi
cation � 	�
A� Structure of the Flags Register ��
A�� Compound Opcodes� Second Byte ��
A�� The Fields Byte ��
A�� Algorithm to Interpret the Fields Byte ��
A�� Mapping of r�m
eld ��
A�� Default Segments �
A�	 Segment Override Pre
x �
A�� ��byte Opcodes ��
A�� ��byte opcodes � Continued ��
A�� ��byte Opcodes � Continued ��
A�� ��byte Opcodes � Continued ��
A�� ��byte Opcodes � Continued �	
A�� ��byte Opcodes � Continued ��
A�� ��byte Opcodes � Continued ���
A��� Table� Opcodes ���
A��� Table Opcodes ���
A�� Table� Opcodes ���
A��� Table� Opcodes ���

B�� PSP Fields ���

C�� Structure of an �exe File ���
C� Fixed Formatted Area ���

D�� Icode Opcodes ��	
D�� Icode Opcodes � Continued ���
D�� Icode Opcodes � Continued ���

F�� DOS Interrupts ���
F�� DOS Interrupts � Continued ���
F�� DOS Interrupts � Continued ���

Chapter �

Introduction to Decompiling

C
ompiler�writing techniques are well known in the computer community� decompiler�
writing techniques are not as well yet known� Interestingly enough� decompiler�writing

techniques are based on compiler�writing techniques� as explained in this thesis� This
chapter introduces the subject of decompiling by describing the components of a decompiler
and the environment in which a decompilation of a binary program is done�

��� Decompilers

A decompiler is a program that reads a program written in a machine language � the source
language � and translates it into an equivalent program in a high�level language � the tar�
get language �see Figure ����� A decompiler� or reverse compiler� attempts to reverse the
process of a compiler which translates a high�level language program into a binary or exe�
cutable program�

��
�high�level language��machine language�

target program
Decompiler

source program

Figure ���� A Decompiler

Basic decompiler techniques are used to decompile binary programs from a wide variety of
machine languages to a diversity of high�level languages� The structure of decompilers is
based on the structure of compilers� similar principles and techniques are used to perform
the analysis of programs� The
rst decompilers appeared in the early ����s� a decade
after their compiler counterparts� As with the
rst compilers� much of the early work on
decompilation dealt with the translation of scienti
c programs� Chapter describes the
history of decompilation�

��� Problems

A decompiler writer has to face several theoretical and practical problems when writing a
decompiler� Some of these problems can be solved by use of heuristic methods� others cannot
be determined completely� Due to these limitations� a decompiler performs automatic
program translation of some source programs� and semi�automatic program translation of

� Introduction to Decompiling

other source programs� This di�ers from a compiler� which performs an automatic program
translation of all source programs� This section looks at some of the problems involved�

����� Recursive Undecidability

The general theory of computability tries to solve decision problems� that is� problems which
inquire on the existence of an algorithm for deciding the truth or falsity of a whole class of
statements� If there is a positive solution� an algorithm must be given� otherwise� a proof
of non�existence of such an algorithm is needed� in this latter case we say that the prob�
lem is unsolvable� undecidable� or non�computable� Unsolvable problems can be partially
computable if an algorithm can be given that answers yes whenever the program halts� but
otherwise loops forever�

In the mathematical world� an abstract concept has to be described and modelled in terms
of mathematical de
nitions� The abstraction of the algorithm has to be described in terms
of what is called a Turing machine� A Turing machine is a computing machine that prints
symbols on a linear tape of in
nite length in both directions� possesses a
nite number
of states� and performs actions speci
ed by means of quadruples based upon its current
internal con
guration and current symbol on the tape� Figure �� shows a representation
of a Turing machine�

tape

�

�
control
unit

read�write device

Figure ��� Turing Machine Representation

The halting problem for a Turing machine Z consists of determining� of a given instan�
taneous description �� whether or not there exists a computation of Z that begins with
�� In other words� we are trying to determine whether or not Z will halt if placed in an
initial state� It has been proved that this problem is recursively unsolvable and partially
computable�Dav�	� GL	��

Given a binary program� the separation of data from code� even in programs that do not
allow such practices as self�modifying code� is equivalent to the halting problem� since it is
unknown in general whether a particular instruction will be executed or not �e�g� consider
the code following a loop�� This implies that the problem is partially computable� and
therefore an algorithm can be written to separata data from code in some cases� but not
all�

��� Problems �

����� The von Neumann Architecture

In von Neumann machines� both data and instructions are represented in the same way
in memory� This means that a given byte located in memory is not known to be data
or instruction �or both� until that byte is fetched from memory� placed on a register� and
used as data or instruction� Even on segmented architectures where data segments hold
only data information and code segments hold only instructions� data can still be stored
in a code segment in the form of a table �e�g� case tables in the Intel architecture�� and
instructions can still be stored in the form of data and later executed by interpreting such
instructions� This latter method was used as part of a Modula� compiler for the PC that
interprets an intermediate code for an abstract stack machine� The intermediate code was
stored as data and the o�set for a particular procedure was pointed to by es�di�GCC����

����� Self�modifying code

Self�modifying code refers to instructions or preset data that are modi
ed during execution
of the program� A memory byte location for an instruction can be modi
ed during program
execution to represent another instruction or data� This method has been used throughout
the years for di�erent purposes� In the ��s and ��s� computers did not have much memory�
and thus it was di�cult to run large programs� Computers with a maximum of �Kb and
��Kb were available at the time� Since space was a constraint� it had to be utilized in the
best way� One way to achieve this was by saving bytes in the executable program� by reusing
data locations as instructions or vice versa� In this way� a memory cell held an instruction
at one time� and data or another instruction at another time� Also� instructions modi
ed
other instructions once they were not needed� and therefore executed di�erent code next
time the program executed that section of code�

Nowadays there are few memory limitations on computers� and therefore self�modifying
code is not used as often� It is still used though when writing encrypting programs or virus
code �see Section ������ A sample self�modifying code for the Intel architecture is given in
Figure ���� The inst de
nition is modi
ed by the mov instruction to the data bytes E����
After the move� inst is treated as yet another instruction� which is now �E�h ��h� that is�
an unconditional jump with o�set ��h� Before the mov� the inst memory location held a
����� which would have been executed as two nop instructions�

��� � other code

mov �inst�� E��� � E� 		 jmp� �� 		 offset

inst db ���� � �� 		 nop

Figure ���� Sample self�modifying Code

����	 Idioms

An idiom or idiomatic expression is a sequence of instructions which form a logical entity�
and which taken together have a meaning that cannot be derived by considering the primary
meanings of the instructions�Gai����

	 Introduction to Decompiling

For example� the multiplication or division by powers of is a commonly known idiom�
multiplication is performed by shifting to the left� while division is performed by shifting
to the right� Another idiom is the way long variables are added� If the machine has a word
size of bytes� a long variable has � bytes� To add two long variables� the low two bytes
are added
rst� followed by the high two bytes� taking into account the carry from the
rst
addition� These idioms and their meaning are illustrated in Figure ���� Most idioms are
known in the computer community� but unfortunately� not all of them are widely known�

shl ax� � add ax� �bp
��

adc dx� �bp
��

�

mul ax� � add dx�ax� �bp
����bp
��

Figure ���� Sample Idioms

����
 Virus and Trojan �tricks�

Not only have virus programs been written to trigger malicious code� but also hide this
code by means of tricks� Di�erent methods are used in viruses to hide their malicious code�
including self�modifying and encrypting techniques�

Figure ��� illustrates code for the Azusa virus� which stores in the stack a new return ad�
dress for a procedure� As can be seen� the segment and o�set addresses of the virus code
are pushed onto the stack� followed by a return far instruction� which transfers control to
the virus code� When disassembling code� most disassemblers would stop at the far return
instruction believing an end of procedure has been met� which is not the case�

��� � other code� ax holds segment SEG value

SEG���C� push ax � set up segment

SEG���C mov ax� �CAh � ax holds an offset

SEG���C� push ax � set up offset

SEG���C� retf � jump to virus code at SEG���CA

SEG���CA ��� � virus code is here

Figure ���� Modify the return address

One frequently used trick is the use of self�modifying code to modify the target address
o�set of an unconditional jump which has been de
ned as data� Figure ��� illustrates the
relevant code of the Cia virus before execution� As can be seen� cont and conta de
ne data

��� Problems

items �E�h and �h respectively� During execution of this program� procX modi
es the con�
tents of conta with the o�set of the virus code� and after procedure return� the instruction
jmp virusOffset ��E�h virusOffset� is executed� treating data as instructions�

start�

call procX � invoke procedure

cont db �E�h � opcode for jmp

conta dw �

procX�

mov cs��conta��virusOffset

ret

virus�

��� � virus code

end�

Figure ���� Self�modifying Code Virus

Virus code can be present in an encrypted form� and decryption of this code is only per�
formed when needed� A simple encryption�decryption mechanism is performed by the xor
function� since two xors of a byte against the same constant are equivalent to the original
byte� In this way� encryption is performed with the application of one xor through the code�
and decryption is performed by xoring the code against the same constant value� This virus
is illustrated in Figure ���� and was part of the LeprosyB virus�

encrypt�decrypt�

mov bx� offset virus�code � get address of start encrypt�decrypt

xor�loop�

mov ah� �bx� � get the current byte

xor ah� encrypt�val � encrypt�decrypt with xor

mov �bx�� ah � put it back where we got it from

inc bx � bx points to the next byte

cmp bx� offset virus�code�virus�size � are we at the end�

jle xor�loop � if not� do another cycle

ret

Figure ���� Self�encrypting Virus

Recently� polymorphic mutation is used to encrypt viruses� The idea of this virus is to self�
generate sections of code based on the regularity of the instruction set� Figure ��	 illustrates
the encryption engine of the Nuke virus� Here� a di�erent key is used each time around the
encryption loop �ax�� and the encryption is done by means of an xor instruction�

� Introduction to Decompiling

Encryption�Engine�

��AB mov cx����h

��AE mov ax��E�Ch

��B� encryption�loop�

��B� xor cs��si��ax

��B� inc si

��B dec ah

��B� inc ax

��B� loop encryption�loop

��BA retn

Figure ��	� Self�generating Virus

In general� virus programs make use of any �aw in the machine language set� self�modifying
code� self�encrypting code� and undocumented operating system functions� This type
of code is hard to disassemble automatically� given that most of the modi
cations to
instructions�data are done during program execution� In these cases� human intervention
is required�

����� Architecture�dependent Restrictions

Most of the contemporary machine architectures make use of a prefetch bu�er to fetch
instructions while the processor is executing instructions� This means that instructions that
are prefetched are stored in a di�erent location from the instructions that are already in main
memory� When a program uses self�modifying code to attempt to modify an instruction in
memory� if the instruction has already been prefetched� it is modi
ed in memory but not in
the pipeline bu�er� therefore� the initial� unmodi
ed instruction is executed� This example
can be seen in Figure ���� In this case� the jmpDef data de
nition is really an instruction�
jmp codeExecuted� This de
nition appears to be modi
ed by the previous instruction�
mov �jumpDef��ax� which places two nop instructions in the de
nition of jmpDef� This
would mean that the code at codeNotExecuted is executed� displaying �Hello world�� and
exiting� When running this program on an i	��	� machine� �Share and Enjoy�� is displayed�
The i	��	� has a prefetch bu�er of � bytes� so the jmpDef de
nition is not modi
ed because
it has been prefetched� and therefore the jump to codeExecuted is done� and �Share and
Enjoy�� is displayed� This type of code cannot be determined by normal straight line step
debuggers� unless a complete emulation of the machine is done�

����� Subroutines included by the compiler and linker

Another problem with decompilation is the great number of subroutines introduced by the
compiler and the number of routines linked in by the linker� The compiler will always
include start�up subroutines that set up its environment� and runtime support routines
whenever required� These routines are normally written in assembler and in most cases
are untranslatable into a higher�level representation� Also� most operating systems do not
provide a mechanism for sharing libraries� consequently� binary programs are self�contained

��� The Phases of a Decompiler �

mov ax� ���� � �� 		 nop

mov �jumpDef�� ax

jmpDef db �EBh ��h � jmp codeExecuted

codeNotExecuted�

mov dx� helloStr

mov ah���

int �� � display string

int �� � exit

codeExecuted�

mov dx� shareStr

mov ah� ��

int �� � display string

int �� � exit

shareStr db �Share and Enjoy��� �Dh� �Ah� ���

helloStr db �Hello World��� �Dh� �Ah� ���

Figure ���� Architecture�dependent Problem

and library routines are bound into each binary image� Library routines are either written
in the language the compiler was written in or in assembler� This means that a binary
program contains not only the routines written by the programmer� but a great number
of other routines linked in by the linker� For example� a program written in C to display
�hello world� and compiled on a PC has over � di�erent subroutines in the binary program�
A similar program written in Pascal and compiled on the PC generates more than ��
subroutines in the executable program� Out of all these routines� the reverse engineer is
normally interested in just the one initial subroutine� the main program�

��� The Phases of a Decompiler

Conceptually� a decompiler is structured in a similar way to a compiler� by a series of phases
that transform the source machine program from one representation to another� The typ�
ical phases of a decompiler are shown in Figure ����� These phases represent the logical
organization of a decompiler� In practice� some of the phases will be grouped together� as
seen in Section ����

A point to note is that there is no lexical analysis or scanning phase in the decompiler� This
is due to the simplicity of machine languages� all tokens are represented by bytes or bits
of a byte� Given a byte� it is not possible to determine whether that byte forms the start
of a new token or not� for example� the byte �� could represent the opcode for a push ax

instruction� an immediate constant� or an o�set to a data location�

� Introduction to Decompiling

�

�

�

�

�
Control Flow Graph Generator

�

�

�

Semantic Analyzer

binary program

Syntax Analyzer

Intermediate Code Generator

Data Flow Analyzer

Code Generator

Control Flow Analyzer

HLL program

Figure ����� Phases of a Decompiler

����� Syntax Analysis

The parser or syntax analyzer groups bytes of the source program into grammatical phrases
�or sentences� of the source machine language� These phrases can be represented in a parse
tree� The expression sub cx� �� is semantically equivalent to cx �	 cx
 ��� This latter
expression can be represented in a parse tree as shown in Figure ����� There are two phrases
in this expression� cx
 �� and cx �	 �exp�� These phrases form a hierarchy� but due to
the nature of machine language� the hierarchy will always have a maximum of two levels�

HHHHH

������

XXXXXXXXXX

�������

��

constant

cx

identi�er �

expression

cx

identi�er ��

assignment statement

Figure ����� Parse tree for cx �� cx � ��

The main problem encountered by the syntax analyzer is determining what is data and
what is an instruction� For example� a case table can be located in the code segment and
it is unknown to the decompiler that this table is data rather than instructions� due to
the architecture of the von Neumann machine� In this case� instructions cannot be parsed

��� The Phases of a Decompiler

sequentially assuming that the next byte will always hold an instruction� Machine dependent
heuristics are required in order to determine the correct set of instructions� Syntax analysis
is covered in Chapter ��

����� Semantic Analysis

The semantic analysis phase checks the source program for the semantic meaning of groups
of instructions� gathers type information� and propagates this type across the subroutine�
Given that binary programs were produced by a compiler� the semantics of the machine
language is correct in order for the program to execute� It is rarely the case in which a
binary program does not run due to errors in the code generated by a compiler� Thus�
semantic errors are not present in the source program unless the syntax analyzer has parsed
an instruction incorrectly or data has been parsed instead of instructions�

In order to check for the semantic meaning of a group of instructions� idioms are looked for�
The idioms from Figure ��� can be transformed into semantically equivalent instructions�
the multiplication of ax by � in the
rst case� and the addition of long variables in the second
case� �bp
����bp
� represent a long variable for that particular subroutine� and dx�ax

holds the value of a long variable temporarily in this subroutine� These latter registers do
not have to be used as a long register throughout the subroutine� only when needed�

Type propagation of newly found types by idiomatic expressions is done throughout the
graph� For example� in Figure ���� two stack locations of a subroutine were known to
be used as a long variable� Therefore� anywhere these two locations are used or de
ned
independently must be converted to a use or de
nition of a long variable� If the following
two statements are part of the code for that subroutine

asgn �bp
��� �

asgn �bp
�� �h

the propagation of the long type on �bp
�� and �bp
� would merge these two statements
into one that represents the identi
ers as longs� thus

asgn �bp
����bp
�� �h

Finally� semantic errors are normally not produced by the compiler when generating code�
but can be found in executable programs that run on a more advanced architecture than
the one that is under consideration� For example� say we are to decompile binaries of the
i	�	� architecture� The new i	��	� and i	��	� architectures are based on this i	�	�
architecture� and their binary programs are stored in the same way� What is di�erent in
these new architectures� with respect to the machine language� is the use of more registers
and instructions� If we are presented with an instruction

add ebx� ��

the register identi
er ebx is a ��bit register not present in the old architecture� Therefore�
although the instruction is syntactically correct� it is not semantically correct for the
machine language we are decompiling� and thus an error needs to be reported� Chapter �
covers some of the analysis done in this phase�

�� Introduction to Decompiling

����� Intermediate Code Generation

An explicit intermediate representation of the source program is necessary for the decompiler
to analyse the program� This representation must be easy to generate from the source
program� and must also be a suitable representation for the target language� The
semantically equivalent representation illustrated in Section ����� is ideal for this purpose�
it is a three�address code representation in which an instruction can have at most three
operands� These operands are all identi
ers in machine language� but can easily be
extended to expressions to represent high�level language expressions �i�e� an identi
er is
an expression�� In this way� a three�address representation is used� in which an instruction
can have at most three expressions� Chapter � describes the intermediate code used by the
decompiler�

����	 Control Flow Graph Generation

A control �ow graph of each subroutine in the source program is also necessary for the
decompiler to analyse the program� This representation is suited for determining the high�
level control structures used in the program� It is also used to eliminate intermediate jumps
that the compiler generated due to the o�set limitations of a conditional jump in machine
language� In the following code

��� � other code

jne x � x �	 maximum offset allowed for jne

��� � other code

x� jmp y � intermediate jump

��� � other code

y� ��� � final target address

label x is the target address of the conditional jump jne x� This instruction is limited by
the maximum o�set allowed in the machine architecture� and therefore cannot execute a
conditional jump to y on the one instruction� it has to use an intermediate jump instruction�
In the control �ow graph� the conditional jump to x is replaced with the
nal target jump
to y�

����
 Data Flow Analysis

The data �ow analysis phase attempts to improve the intermediate code� so that high�level
language expressions can be found� The use of temporary registers and condition �ags is
eliminated during this analysis� as these concepts are not available in high�level languages�
For a series of intermediate language instructions

asgn ax� �bp
�Eh�

asgn bx� �bp
�Ch�

asgn bx� bx � �

asgn ax� ax � bx

asgn �bp
�Eh�� ax

the
nal output should be in terms of a high�level expression

asgn �bp
�Eh�� �bp
�Eh� � �bp
�Ch� � �

��� The Phases of a Decompiler ��

The
rst set of instructions makes use of registers� stack variables and constants� expressions
are in terms of identi
ers� with a maximum tree level of � After the analysis� the
nal
instruction makes use of stack variable identi
ers� �bp
�Eh�� �bp
�Ch�� and an expression
tree of � levels� �bp
�Eh� �	 �bp
�Eh� � �bp
�Ch� � �� The temporary registers used
by the machine language to calculate the high�level expression� ax and bx� along with the
loading and storing of these registers� has been eliminated� Chapter � presents an algorithm
to perform this analysis� and to eliminate other intermediate language instructions such as
push and pop�

����� Control Flow Analysis

The control �ow analyzer phase attempts to structure the control �ow graph of each
subroutine of the program into a generic set of high�level language constructs� This
generic set must contain control instructions available in most languages� such as looping
and conditional transfers of control� Language�speci
c constructs should not be allowed�
Figure ��� shows two sample control �ow graphs� an if��then��else and a while���
Chapter � presents an algorithm for structuring arbitrary control �ow graphs�

� �

�n
n
n
n

n
n n
n

��

�

�

while��

�
��

�
�R

�
��

�
��R

�

�

�

if��then��else

Figure ���� Generic Constructs

����� Code Generation

The
nal phase of the decompiler is the generation of target high�level language code� based
on the control �ow graph and intermediate code of each subroutine� Variable names are
selected for all local stack� argument� and register�variable identi
ers� Subroutine names
are also selected for the di�erent routines found in the program� Control structures and
intermediate instructions are translated into a high�level language statement�

For the example in Section ������ the local stack identi
ers �bp
�Eh� and �bp
�Ch� are
given the arbitrary names loc� and loc� respectively� and the instruction is translated to
say the C language as

loc� 	 loc� � �loc� � ���

Code generation is covered in Chapter ��

�� Introduction to Decompiling

��� The Grouping of Phases

The decompiler phases presented in Section ��� are normally grouped in the implementa�
tion of the decompiler� As shown in Figure ����� three di�erent modules are distinguished�
front�end� udm� and back�end�

�

�

�

�

HLL program

�language dependent�

Back�end

�analysis�

udm

�machine dependent�

Front�end

binary program

Figure ����� Decompiler Modules

The front�end consists of those phases that are machine and machine�language dependent�
These phases include lexical� syntax and semantic analyses� and intermediate code and
control �ow graph generation� As a whole� these phases produce an intermediate� machine�
independent representation of the program�

The udm is the universal decompiling machine� an intermediate module that is completely
machine and language independent� and that performs the core of the decompiling analysis�
Two phases are included in this module� the data �ow and the control �ow analyzers�

Finally� the back�end consists of those phases that are high�level or target language de�
pendent� This module is the code generator�

In compiler theory� the grouping of phases is a mechanism used by compiler writers to gener�
ate compilers for di�erent machines and di�erent languages� If the back�end of the compiler
is rewritten for a di�erent machine� a new compiler for that machine is constructured by
using the original front�end� In a similar way� a new front�end for another high�level lan�
guage de
nition can be written and used with the original back�end� In practice there are
some limitations to this method� inherent to the choice of intermediate code representation�

��
 The Context of a Decompiler ��

In theory� the grouping of phases in a decompilermakes it easy to write di�erent decompilers
for di�erent machines and languages� by writing di�erent front�ends for di�erent machines�
and di�erent back�ends for di�erent target languages� In practical applications� this result
is always limited by the generality of the intermediate language used�

��� The Context of a Decompiler

In practice� several programs can be used with the decompiler to create the target high�
level language program� In general� source binary programs have a relocation table of
addresses that are to be relocated when the program is loaded into memory� This task is
accomplished by the loader� The relocated or absolute machine code is then disassembled
to produce an assembly representation of the program� The disassembler can use help from
compiler and library signatures to eliminate the disassembling of compiler start�up code and
library routines� The assembler program is then input to the decompiler� and a high�level
target program is generated� Any further processing required on the target program� such
as converting while�� loops into for loops can be done by a postprocessor� Figure ����
shows the steps involved in a typical �decompilation�� The user could also be a source of
information� particularly when determining library routines and separation of data from
instructions� Whenever possible� it is more reliable to use automatic tools� Decompiler
helper tools are covered in Chapter 	� This section brie�y explains their task�

�

�

�

�

�

�

�

�

�

�

�
�

XXXXXXy

						

�

library signatures
�

assembler program

library bindings

absolute machine code

loader

disassembler

decompiler

HLL program

postprocessor

HLL program

relocatable machine code

prototype generator

library prototypes

library headers

compiler signatures

libraries

signature generator

Figure ����� A Decompilation System

Loader

The loader is a program that loads a binary program into memory� and relocates the machine
code if it is relocatable� During relocation� instructions are altered and placed back in
memory�

�	 Introduction to Decompiling

Signature Generator

A signature generator is a program that automatically determines compiler and library sig�
natures� a binary pattern that uniquely identi
es each compiler and library subroutine� The
use of these signatures attempts to reverse the task performed by the linker� which links
in library and compiler start�up code into the program� In this way� the analyzed program
consist only of user subroutines� the ones that the user compiled in the initial high�level
language program�

For example� in the compiled C program that displays �hello world� and has over � dif�
ferent subroutines in the binary program� �� subroutines were added by the compiler to
set�up its environment� � routines that form part of printf�� were added by the linker�
and � subroutine formed part of the initial C program�

The use of a signature generator not only reduces the number of subroutines to analyze�
but also increases the documentation of the target programs by using library names rather
than arbitrary subroutine names�

Prototype Generator

The prototype generator is a program that automatically determines the types of the
arguments of library subroutines� and the type of the return value in the case of functions�
These prototypes are derived from the library header
les� and are used by the decompiler
to determine the type of the arguments to library subroutines and the number of such
arguments�

Disassembler

A disassembler is a program that transforms a machine language into assembler language�
Some decompilers transform assembler programs to a higher representation �see Chapter ��
In these cases� the assembler program has been produced by a disassembler� was written in
assembler� or the compiler compiled to assembler�

Library Bindings

Whenever the target language of the decompiler is di�erent to the original language used
to compile the binary source program� if the generated target code makes use of library
names �i�e� library signatures were detected�� although this program is correct� it cannot
be recompiled in the target language since it does not use library routines for that language
but for another one� The introduction of library bindings solves this problem� by binding
the subroutines of one language to the other�

Postprocessor

A postprocessor is a program that transforms a high�level language program into a
semantically equivalent high�level program written in the same language� For example�
if the target language is C� the following code

��� Uses of Decompilation �

loc� 	 ��

while �loc� � ��� �

�� some code in C ��

loc� 	 loc� � ��

�

would be converted by a postprocessor into

for �loc� 	 �� loc� � ��� loc���� �

�� some code in C ��

�

which is a semantically equivalent program that makes use of control structures available
in the C language� but not present in the generic set of structures decompiled by the
decompiler�

��� Uses of Decompilation

Decompilation is a tool for a computer professional� There are two major areas where
decompilation is used� software maintenance and security� In the former area� decompilation
is used to recover lost or inaccessible source code� translate code written in an obsolete
language into a newer language� structure old code written in an unstructured way �i�e�
spaghetti code� into a structured program� migrate applications to a new hardware platform�
and debug binary programs that are known to have bugs but for which the source code is
unavailable� In the latter area� decompilation is used as a tool to verify the object code
produced by a compiler in software�critical systems� since the compiler cannot be trusted
in these systems� and to check for the existence of malicious code such as viruses�

����� Legal Aspects

Several questions have been raised in the last years regarding the legality of decompilation�
A debate between supporters of decompilation who claim fair competition is possible with
the use of decompilation tools� and the opponents of decompilation who claim copyright
is infringed by decompilation� is currently being held� The law in di�erent countries is
being modi
ed to determine in which cases decompilation is lawful� At present� commercial
software is being sold with software agreements that ban the user from disassembling or
decompiling the product� For example� part of the Lotus software agreement reads like this�

You may not alter� merge� modify or adapt this Sofware in any way including
disassembling or decompiling�

It is not the purpose of this thesis to debate the legal implications of decompilation� This
topic is not further covered in this thesis�

Chapter �

Decompilation � What has been done�

D
i�erent attempts at writing decompilers have been made in the last � years� Due to
the amount of information lost in the compilation process� to be able to regenerate

high�level language code all of these experimental decompilers have limitations in one way
or another� including decompilation of assembly
les�Hou��� Fri��� Wor�	� Hop�	� Bri	�� or
object
les with or without symbolic debugging information�Reu		� PW���� simpli
ed high�
level language�Hou���� and the requirement of the compiler�s speci
cation�BB��� BB����
Assembly programs have helpful data information in the form of symbolic text� such as
data segments� data and type declarations� subroutine names� subroutine entry point� and
subroutine exit statement� All this information can be collected in a symbol table and then
the decompiler would not need to address the problem of separating data from instructions�
or the naming of variables and subroutines� Object
les with debugging information contain
the program�s symbol table as constructed by the compiler� Given the symbol table� it is
easy to determine which memory locations are instructions� as there is a certainty on which
memory locations represent data� In general� object
les contain more information than
binary
les� Finally� knowledge of the compiler�s speci
cations is impractical� as these
speci
cations are not normally disclosed by compiler manufacturers�

��� Previous Work

Decompilers have been considered a useful software tool since they were
rst used in the
����s� At that time� decompilers were used to aid in the program conversion process from
second to third generation computers� in this way� manpower would not be spent in the
time�consuming task of rewriting programs for the third generation machines� During the
��s and 	�s� decompilers were used for the portability of programs� documentation� de�
bugging� re�creation of lost source code� and the modi
cation of existing binaries� In the
��s� decompilers have become a reverse engineering tool capable of helping the user with
such tasks as checking software for the existence of illegal code� checking that a compiler
generates the right code� and translation of binary programs from one machine to another�
It is noted that decompilation is not being used for software piracy or breach of copyright�
as the process is incomplete in general� and can be used only as a tool to help develop a
task�

The following descriptions illustrate the best�known decompilers and�or research performed
into decompiler topics by individual researchers or companies�

D�Neliac decompiler� ���� As reported by Halstead in �Hal��� the Donnelly�Neliac
�D�Neliac� decompiler was produced by J�K�Donnelly and H�Englander at the Navy

�� Decompilation � What has been done�

Electronics Laboratory �NEL� in ����� Neliac is an Algol�type language developed
at the NEL in ����� The D�Neliac decompiler produced Neliac code from machine
code programs� di�erent versions were written for the Remington Rand Univac M����
Countess computer and the Control Data Corporation ���� computer�

D�Neliac proved useful for converting non�Neliac compiled programs into Neliac� and
for detecting logic errors in the original high�level program� This decompiler proved the
feasibility of writing decompilers�

W�Sassaman� ���� Sassaman developed a decompiler at TRW Inc�� to aid in the
conversion process of programs from nd to �rd generation computers� This decompiler
took as input symbolic assembler programs for the IBM ���� series and produced
Fortran programs� Binary code was not chosen as input language because the
information in the symbolic assembler was more useful� Fortran was a standard
language in the ����s and ran on both nd and �rd generation computers� Engineering
applications which involved algebraic algorithms were the type of programs decompiled�
The user was required to de
ne rules for the recognition of subroutines� The decompiler
was �� accurate� and some manual intervention was required�Sas����

This is the �rst decompiler that makes use of assembler input programs rather than
pure binary code� Assembler programs contain useful information in the form of names�
macros� data and instructions� which are not available in binary or executable programs�
and therefore eliminate the problem of separating data from instructions in the parsing
phase of a decompiler�

M�Halstead� ���� The Lockheed Missiles and Space Company �LMSC� added some
enhancements to the Neliac compiler developed at the Navy Electronics Laboratory� to
cater for decompilation�Hal���� The LMSC Neliac decompiler took as input machine
code for the IBM ���� and produced Neliac code for the Univac ���	� It proved
successful by decompiling over �� of instructions and leaving the programmer to
decompile the other �� � This decompiler was used at LMSC and under contract for
customers in the U�S�A� and Canada�Hal����

Halstead analyzed the implementation e�ort required to raise the percentage of correctly
decompiled instructions half way to 	

�� and found that it was approximately equal to
the e�ort already spent�Hal
�� This was because decompilers from that time handled
straightforward cases� but the harder cases were left for the programmer to consider�
In order to handle more cases� more time was required to code these special cases into
the decompiler� and this time was proportionately greater than the time required to code
simple cases�

Autocoder to Cobol Conversion Aid Program� ���� Housel reported on a set of
commercial decompilers developed by IBM to translate Autocoder programs� which
were business data processing oriented� to Cobol� The translation was a one�to�
one mapping and therefore manual optimization was required� The size of the
nal
programs occupied �� times the core storage of the original program�Hou����

This decompiler is really a translation tool of one language to another� No attempt
is made to analyze the program and reduce the number of instructions generated�
Ine�cient code was produced in general�

��� Previous Work �

C�R�Hollander� ���� Hollander�s PhD dissertation�Hol��� describes a decompiler de�
signed around a formal syntax�oriented metalanguage� and consisting of � cooperating
sequential processes� initializer� scanner� parser� constructor� and generator� each im�
plemented as an interpreter of sets of metarules� The decompiler was a metasystem
that de
ned its operations by implementing interpreters�

The initializer loads the program and converts it into an internal representation� The
scanner interacts with the initializer when
nding the
elds of an instruction� and
interacts with the parser when matching source code templates against instructions�
The parser establishes the correspondence between syntactic phrases in the source
language and their semantic equivalents in the target language� Finally� the constructor
and generator generate code for the
nal program�

An experimental decompiler was implemented to translate a subset of IBM�s Sys�
tem���� assembler into an Algol�like target language� This decompiler was written in
Algol�W� a compiler developed at Stanford University� and worked correctly on the ��
programs it was tested against�

This work presents a novel approach to decompilation� by means of a formal syntax�
oriented metalanguage� but its main drawback is precisely this methodology� which is
equivalent to a pattern�matching operation of assembler instructions into high�level
instructions� This limits the amount of assembler instructions that can be decompiled�
as instructions that belong to a pattern need to be in a particular order to be recognized�
intermediate instructions� di�erent control �ow patterns� or optimized code is not
allowed� In order for syntax�oriented decompilers to work� the set of all possible patterns
would need to be enumerated for each high�level instruction of each di�erent compiler�
Another approach would be to write a decompiler for a speci�c compiler� and make
use of the speci�cations of that compiler� this approach is only possible if the compiler
writer is willing to reveal the speci�cations of his compiler� It appears that Hollander�s
decompiler worked because the compiler speci�cations for the Algol�W compiler that
he was using were known� as this compiler was written at the University where he
was doing this research� The set of assembler instructions generated for a particular
Algol�W instruction were known in this case�

B�C�Housel� ���� Housel�s PhD dissertation�Hou��� describes a clear approach to de�
compilation by borrowing concepts from compiler� graph� and optimization theory� His
decompiler involves � major phases� partial assembly� analyzer� and code generation�

The partial assembly phase separates data from instructions� builds a control �ow
graph� and generates an intermediate representation of the program� The analyzer
analyzes the program in order to detect program loops and eliminate unnecessary
intermediate instructions� Finally� the code generator optimizes the translation of
arithmetic expressions� and generates code for the target language�

An experimental decompiler was written for Knuth�s MIX assembler �MIXAL�� pro�
ducing PL�� code for the IBM ��� machines� � programs were tested� 		 of the
instructions were correct� and the remaining � of the instructions required manual
intervention�HH����

This decompiler proved that by using known compiler and graph methods� a decompiler
could be written that produced good high�level code� The use of an intermediate

�� Decompilation � What has been done�

representation made the analysis completely machine independent� The main objection
to this methodology is the choice of source language� MIX assembler� not only for the
greater amount of information available in these programs� but for being a simpli�ed
non�real�life assembler language�

The Piler System� ��	� Barbe�s Piler system attempts to be a general decompiler that
translates a large class of source�target language pairs to help in the automatic
translation of computer programs� The Piler system was composed of three phases�
interpretation� analysis� and conversion� In this way� di�erent interpreters could
be written for di�erent source machine languages� and di�erent converters could be
written for di�erent target high�level languages� making it simple to write decompilers
for di�erent source�target language pairs� Other uses for this decompiler included
documentation� debugging aid� and evaluation of the code generated by a compiler�

During interpretation� the source machine program was loaded into memory� parsed
and converted into a ��address microform representation� This meant that each
machine instruction required one or more microform instructions� The analyzer
determined the logical structure of the program by means of data �ow analysis� and
modi
ed the microform representation to an intermediate representation� A �owchart
of the program after this analysis was made available to users� and they could even
modify the �owchart� if there were any errors� on behalf of the decompiler� Finally�
the converter generated code for the target high�level language�Bar����

Although the Piler system attempted to be a general decompiler� only an interpreter
for machine language of the GE�Honeywell ��� computer was written� and skeletal
converters for Univac ���	�s Fortran and Cobol were developed� The main e�ort of
this project concentrated on the analyzer�

The Piler system was a �rst attempt at a general decompiler for a large class of source
and target languages� Its main problem was to attempt to be general enough with the
use of a microform representation� which was even lower�level than an assembler�type
representation�

F�L�Friedman� ��	� Friedman�s PhD dissertation describes a decompiler used for the
transfer of mini�computer operating systems within the same architectural class�Fri����
Four main phases are described� pre�processor� decompiler� code generator� and
compiler�

The pre�processor converts assembler code into a standard form �descriptive assembler
language�� The decompiler takes the standard assembler form� analyses it� and
decompiles it into an internal representation� from which FRECL code is then generated
by the code generator� Finally� a FRECL compiler compiles this program into machine
code for another machine� FRECL is a high�level language for program transport and
development� it was developed by Friedman� who also wrote a compiler for it� The
decompiler used in this project was an adaptation of Housel�s decompiler�Hou����

Two experiments were performed� the
rst one involved the transport of a small but
self�contained portion of the IBM ���� Disk Monitor System to Microdata ������� up
to �� manual intervention was required on the input assembler programs� Overall� the
amount of e�ort required to prepare the code for input to the transport system was too
great to be completed in a reasonable amount of time� therefore� a second experiment

��� Previous Work ��

was conducted� The second experiment decompiled Microdata ��� operating system
programs into FRECL and compiled them back again into Microdata ��� machine
code� Some of the resultant programs were re�inserted into the operating system and
tested� On average� only of the input assembler instructions required manual
intervention� but the
nal machine program had a ��� increase in the number of
machine instructions�

This dissertation is a �rst attempt at decompiling operating system code� and it
illustrates the di�culties faced by the decompiler when decompiling machine�dependent
code� Input programs to this transport system require a large amount of e�ort to be
presented in the format required by the system� and the �nal produced programs appear
to be ine�cient� both in the size of the program and the time to execute many more
machine instructions�

Ultrasystems� ��	� Hopwood reported on a decompilation project at Ultrasystems� Inc��
in which he was a consultant for the design of the system�Hop�	�� This decompiler
was to be used as a documentation tool for the Trident submarine
re control software
system� It took as input Trident assembler programs� and produced programs in the
Trident High�Level Language �THLL� that was being developed at this company� Four
main stages were distinguished� normalization� analysis� expression condensation� and
code generation�

The input assembler programs were normalized so that data areas were distinguished
with pseudo�instructions� An intermediate representation was generated� and the data
analyzed� Arithmetic and logical expressions were built during a process of expression
condensation� and
nally� the output high�level language program was generated by
matching control structures to those available in THLL�

This project attempts to document assembler programs by converting them into high�
level language� The fact is� given the time constraints of the project� the expression
condensation phase was not coded� and therefore the output programs were hard to
read� as several instructions were required for a single expression�

V�Schneider and G�Winiger� ��	� Schneider and Winiger presented a notation for
specifying the compilation and decompilation of high�level languages� By de
ning
a context�free grammar for the compilation process �i�e� describe all possible �
address object code produced from expressions and assignments�� the paper shows
how this grammar can be inverted to decompile the object code into the original
source program�SW���� Even more� an ambiguous compilation grammar will produce
optimal object code� and will generate an unambiguous decompilation grammar� A
case study showed that the object code produced by the Algol �� constructs could
not be decompiled deterministically� This work was part of a future decompiler� but
further references in the literature about this work were not found�

This work presents� in a di�erent way� a syntax�oriented decompiler�Hol��� that is� a
decompiler that uses pattern matching of a series of object instructions to reconstruct
the original source program� In this case� the compilation grammar needs to be known
in order to invert the grammar and generate a decompilation grammar� Note that no
optimization is possible if it is not de�ned as part of the compilation grammar�

�� Decompilation � What has been done�

Decompilation of Polish code� ���� ���� ���� Two papers in the area of decom�
pilation of Polish code into Basic code are found in the literature� The problem arises
in connection with highly interactive systems� where a fast response is required to
every input from the user� The user�s program is kept in an intermediate form� and
then �decompiled� each time a command is issued� An algorithm for the translation
of reverse Polish notation to expressions is given�BP����

The second paper presents the process of decompilation as a two step problem� the
need to convert machine code to Polish representation� and the conversion of Polish
code to source form� The paper concentrates on the second step of the decompilation
problem� but yet claims to be decompiling Polish code to Basic code by means of a
context�free grammar for Polish notation and a left�to�right or right�to�left parsing
scheme�BP	���

This technique was recently used in a decompiler that converted reverse Polish code
into spreadsheet expressions�May		�� In this case� the programmers of a product that
included a spreadsheet�like component wanted to speed up the product by storing user�s
expressions in a compiled form� reverse Polish notation in this case� and decompile these
expressions whenever the user wanted to see or modify them� Parentheses were left as
part of the reverse Polish notation to reconstruct the exact same expression the user
had input to the system�

The use of the word decompilation in this sense is a misuse of the term� All that
is being presented in these papers is a method for re�constructing or deparsing the
original expression �written in Basic or Spreadsheet expressions� given an intermediate
Polish representation of a program� In the case of the Polish to Basic translators� no
explanation is given as to how to arrive at such an intermediate representation given
a machine program�

G�L�Hopwood� ���� Hopwood�s PhD dissertation�Hop�	� describes a ��step decompiler
designed for the purposes of transferability and documentation� It is stated that
the decompilation process can be aided by manual intervention or other external
information�

The input program to the decompiler is formatted by a preprocessor� then loaded
into memory� and a control �ow graph of the program is built� The nodes of this
graph represent one instruction� After constructing the graph� control patterns are
recognized� and instructions that generate a goto statement are eliminated by the use
of either node splitting or the introduction of synthetic variables� The source program
is then translated into an intermediate machine independent code� and analysis of
variable usage is performed on this representation in order to
nd expressions and
eliminate unnecessary variables by a method of forward substitution� Finally� code is
generated for each intermediate instruction� functions are implemented to represent
operations not supported by the target language� and comments are provided� Manual
intervention was required to prepare the input data� provide additional information
that the decompiler needed during the translation process� and to make modi
cations
to the target program�

An experimental decompiler was written for the Varian Data machines ���i� It de�
compiled assembler into MOL��� a machine�oriented language developed at University
of California at Irvine by M�D�Hopwood and the author� The decompiler was tested

��� Previous Work ��

with a large debugger program� Isadora� which was written in assembler� The gener�
ated decompiled program was manually modi
ed to recompile it into machine code� as
there were calls to interrupt service routines� self�modifying code� and extra registers
used for subroutine calls� The
nal program was better documented than the original
assembler program�

The main drawbacks of this research are the granularity of the control �ow graph and
the use of registers in the �nal target program� In the former case� Hopwood chose to
build control �ow graphs that had one node per instruction� this means that the size
of the control �ow graph is quite large for large programs� and there is no bene�t
gained as opposed to using nodes that are basic blocks �i�e� the size of the nodes
is dependent on the number of changes of �ow of control�� In the latter case� the
MOL��
 language allows for the use of machine registers� and sample code illustrated
in Hopwood�s dissertation shows that registers were used as part of expressions and
arguments to subroutine calls� The concept of registers is not a high�level concept
available in high�level languages� and it should not be used if wanting to generate high�
level code�

D�A�Workman� ���� This work describes the use of decompilation in the design of a
high�level language suitable for real time training device systems� in particular the
F� trainer aircraft�Wor�	�� The operating system of the F� was written in assembler�
and it was therefore the input language to this decompiler� The output language
was not determined as this project was to design one� thus code generation was not
implemented�

Two phases of the decompiler were implemented� the
rst phase� which mapped
the assembler to an intermediate language and gathered statistics about the source
program� and the second phase� which generated a control �ow graph of basic
blocks� classi
ed the instructions according to their probable type� and analyzed
the �ow of control in order to determine high�level control structures� The results
indicated the need of a high�level language that handled bit strings� supported looping
and conditional control structures� and did not require dynamic data structures or
recursion�

This work presents a novel use of decompilation techniques� although the input language
was not machine code but assembler� A simple data analysis was done by classifying
instructions� but did not attempt to analyze them completely as there was no need to
generate high�level code� The analysis of the control �ow is complete and considers �
di�erent categories of loops and ��way conditional statements�

Zebra� ���� The Zebra prototype was developed at the Naval Underwater Systems
Centre in an attempt to achieve portability of assembler programs� Zebra took as input
a subset of the ULTRA�� assembler� called AN�UYK��� and produced assembler for
the PDP������ The project was described by D�L�Brinkley in �Bri	���

The Zebra decompiler was composed of � passes� a lexical and �ow analysis pass� which
parsed the program and performed control �ow analysis in the graph of basic blocks�
The second pass was concerned with the translation of the program to an intermediate
form� and the third pass simpli
ed the intermediate representation by eliminating
extraneous loads and stores� in much the same way described by Housel�Hou��� HH����

�	 Decompilation � What has been done�

It was concluded that it was hard to capture the semantics of the program and that
decompilation was economically impractical� but it could aid in the transportation
process�

This project made use of known technology to develop a decompiler of assembler
programs� No new concepts were introduced by this research� but it raised the point
that decompilation is to be used as a tool to aid in the solution of a problem� but not
as tool that will give all solutions to the problem� given that a 	

� correct decompiler
cannot be built�

Decompilation of DML programs� ���� A decompiler of database code was designed
to convert a subset of Codasyl DML programs� written with procedural operations� into
a relational system with a nonprocedural query speci
cation� An Access Path Model
is introduced to interpret the semantic accesses performed by the program� In order
to determine how FIND operations implement semantic accesses� a global data �ow
reaching analysis is performed on the control �ow graph� and operations are matched
to templates� The
nal graph structures are remapped into a relational structure�
This method depends on the logical order of the objects and a standard ordering of
the DML statements�KW	��

Another decompiler of database code was proposed to decompile well�coded application
programs into a proposed semantic representation is described in �DS	�� This work
was induced by changes in the use requirements of a Database Management System
�DBMS�� where application programs were written in Cobol�DML� A decompiler of
Cobol�DML programs was written to analyse and convert application programs into a
model and schema�independent representation� This representation was later modi
ed
or restructured to account for database changes� Language templates were used to
match against key instructions of a Cobol�DML programs�

In the context of databases� decompilation is viewed as the process of grouping a se�
quence of statements which represent a query into another �nonprocedural� speci�ca�
tion� Data �ow analysis is required� but all other stages of a decompiler are not imple�
mented for this type of application�

Forth Decompiler� ���� ��	� A recursive Forth decompiler is a tool that scans
through a compiled dictionary entry and decompiles words into primitives and
addresses�Dud	�� Such a decompiler is considered one of the most useful tools in
the Forth toolbox�HM	��� The decompiler implements a recursive descent parser so
that decompiled words can be decompiled in a recursive fashion�

These works present a deparsing tool rather than a decompiler� The tool recursively
scans through a dictionary table and returns the primitives or addresses associated with
a given word�

Software Transport System� ��
� C�W�Yoo describes an automatic Software Trans�
port System �STS� that moves assembler code from one machine to another� The
process involves the decompilation of an assembler program for machine m� to a high�
level language� and the compilation of this program in a machine m� to assembler� An
experimental decompiler was developed on the Intel 	�	� architecture� it took as input
assembler programs and produced PL�M programs� The recompiled PL�M programs
were up to � more e�cient than their assembler counterpart� An experimental

��� Previous Work �

STS was developed to develop a C cross�compiler for the Z�	� processor� The project
encountered problems in the lack of data type in the STS�Yoo	���

The STS took as input an assembler program for machine m� and an assembler
grammar for machine m�� and produced an assembler program for machine m�� The
input grammar was parsed and produced tables used by the abstract syntax tree parser
to parse the input assembler program and generate an abstract syntax tree �AST�
of the program� This AST was the input to the decompiler� which then performed
control and data �ow analyses� in much the same way described by Hollander�Hol����
Friedman�Fri���� and Barbe�Bar���� and
nally generated high�level code� The high�
level language was then compiled for machine m��

This work does not present any new research into the decompilation area� but it does
present a novel approach to the transportation of assembler programs by means of a
grammar describing the assembler instructions of the target architecture�

Decomp� ���� J�Reuter wrote decomp� a decompiler for the Vax BSD �� which took
as input object
les with symbolic information and produced C�like programs� The
nature of this decompiler was to port the Empire game to the VMS environment�
given that source code was not available� The decompiler is freely available on the
Internet�Reu		��

Decomp made use of the symbol table to
nd the entry points to functions� determine
data used in the program� and the names of that data� Subroutines were decompiled
one at a time� in the following way� a control �ow graph of basic blocks was built
and optimised by the removal of arcs leading to intermediate unconditional branches�
Control �ow analysis was performed in the graph to
nd high�level control constructs�
converting the control �ow graph into a tree of generic constructs� The algorithm used
by this analysis was taken from the struct program� a program that structures graphs
produced by Fortran programs� which was based on the structuring algorithm described
by B�Baker in �Bak���� Finally� the generic constructs in the tree were converted to
C�speci
c constructs� and code was generated� The
nal output programs required
manual modi
cations to place the arguments on the procedure�s argument list� and
determine that a subroutine returned a value �i�e� was a function�� This decompiler
was written in about � man�months�Reu����

Sample programs were written and compiled in C in a Vax BSD ��� machine� thanks
to the collaboration of Pete French�Fre�	�� who provided me with an account in a Vax
BSD ��� machine� The resulting C programs are not compilable� but require some
hand editing� The programs have the correct control structures� due to the structuring
algorithm implemented� and the right data type of variables� due to the embedded symbol
table in the object code� The names of library routines and procedures� and the user�s
program entry point are also known from the symbol table� therefore� no extraneous
procedures �e�g� compiler start up code� library routines� are decompiled� The need for
a data �ow analysis stage is vital� though� as neither expressions� actual arguments�
nor function return value are determined� An interprocedural data �ow analysis would
eliminate much of the hand�editing required to recompile the output programs�

exe�c� ��� The Austin Code Works sponsored the development of the exe�c decompiler�
targetted at the PC compatible family of computers running the DOS operating

�� Decompilation � What has been done�

system�Wor���� The project was announced in April �����Gut���� tested by about
� people� and it was decided that it needed some more work to decompile in
C� A year later� the project reached a � operational level�Gut��a�� but was never

nished�Gut��b�� I was a beta tester of this release�

exe�c is a multipass decompiler that consists of � programs� e�a� a�aparse� and
e�c� e�a is the disassembler� It converts executable
les to assembler� and produces
a commented assembler listing as well� e�aparse is the assembler to C front�end
processor� which analyzes the assembler
le produced by e�a and generates �cod and
�glb
les� Finally� the e�c program translates the
les prepared by a�aparse and
generates pseudo�C� An integrated environment� envmnu� is also provided�

Programs decompiled by exe�c make use of a header
le that de
nes registers�
types and macros� The output C programs are hard to understand because they
rely on registers and condition codes �represented by Boolean variables�� Normally�
one machine instruction is decompiled into one or more C instructions that perform
the required operation on registers� and set up condition codes if required by the
instruction� Expressions and arguments to subroutines are not determined� and a local
stack is used for the
nal C programs� It is obvious from this output code that a
data �ow analysis was not implemented in exe�c� This decompiler has implemented a
control �ow analysis stage� looping and conditional constructs are available� The choice
of control constructs is generally adequate� Case tables are not detected correctly�
though� The number and type of procedures decompiled shows that all library routines�
and compiler start�up code and runtime support routines found in the program are
decompiled� The nature of these routines is normally low�level� as they are normally
written in assembler� These routines are hard to decompile as� in most cases� there is
no high�level counterpart �unless it is low�level type C code��

This decompiler is a �rst e�ort in many years to decompile executable �les� The results
show that a data �ow analysis and heuristics are required to produce better C code� Also�
a mechanism to skip all extraneous code introduced by the compiler and to detect library
subroutines would be bene�cial�

PLM��� Decompiler� ��� The Information Technology Division of the Australian
Department of Defence researched into decompilation for defence applications� such
as maintenance of obsolete code� production of scienti
c and technical intelligence�
and assessment of systems for hazards to safety or security� This work was described
by S�T� Hood in �Hoo����

Techniques for the construction of decompilers using de
nite�clause grammars� an
extension of context�free grammars� in a Prolog environment are described� A Prolog
database is used to store the initial assembler code and the recognised syntactic
structures of the grammar� A prototype decompiler for Intel 	�	� assembler programs
compiled by a PLM�	� compiler was written in Prolog� The decompiler produced
target programs in Small�C� a subset of the C language� The de
nite�clause grammar
given in this report was capable of recognizing if��then type structures� and while��
loops� as well as static �global� and automatic �local� variables of simple types �i�e�
character� integers� and longs�� A graphical user interface was written to display the
assembler and pseudo�C programs� and to enable the user to assign variable names�

��� Previous Work ��

and comments� This interface also asked the user for the entry point to the main
program� and allowed him to select the control construct to be recognized�

The analysis performed by this decompiler is limited to the recognition of control
structures and simple data types� No analysis on the use of registers is done or
mentioned� Automatic variables are represented by an indexed variable that represents
the stack� The graphical interface helps the user document the decompiled program by
means of comments and meaningful variable names� This analysis does not support
optimized code�

Decompiler compiler� ����	� A decompiler compiler is a tool that takes as input
a compiler speci
cation and the corresponding portions of object code� and returns
the code for a decompiler� i�e� it is an automatic way of generating decompilers� much
in the same way that yacc is used to generate compilers�BBL��� BB��� BB����

Two approaches are described to generate such a decompiler compiler� a logic and
a functional programming approach� The former approach makes use of the bidirec�
tionality of logic programming languages such as Prolog� and runs the speci
cation
of the compiler backwards to obtain a decompiler�BBL��� BB��� BBL���� In the�
ory this is correct� but in practice this approach is limited to the implementation
of the Prolog interpreter� and therefore problems of strictness and reversibility are
encountered�BB�� BB���� The latter approach is based on the logic approach but
makes use of lazy functional programming languages like Haskell� to generate a more
e�cient decompiler�BBL��� BB��� BBL���� Even if a non�lazy functional language is
to be used� laziness can be simulated in the form of objects rather than lists�

The decompiler produced by a decompiler compiler will take as input object code
and return a list of source codes that can be compiled to the given object code� In
order to achieve this� an enumeration of all possible source codes would be required�
given a description of an arbitrary inherited attribute grammar� It is proved that such
an enumeration is equivalent to the Halting Problem�BB�� BB���� and is therefore
non�computable� Even further� there is no computable method which takes an
attribute grammar description and decides whether or not the compiled code will
give a terminating enumeration for a given value of the attribute�BB�� BB���� so it
is not straightforward which grammars can be used� Therefore� the class of grammars
acceptable to this method needs to be restricted to those that produce a complete
enumeration� such as non left�recursive grammars�

An implementation of this method was
rstly done for a subset of an Occam�
like language using a functional programming language� The decompiler grammar
was an inherited attribute grammar which took the intended object code as an
argument�BB�� BB���� A Prolog decompiler was also described based on the compiler
speci
cation� This decompiler applied the clauses of the compiler in a selective and
ordered way� so that the problem of non�termination would not be met� and only
a subset of the source code programs would be returned �rather than an in
nite
list��Bow��� Bow���� Recently� this method made use of an imperative programming
language� C!!� due to the ine�ciencies of the functional and logic approach� In this
prototype� C!! object�s were used as lazy lists� and a set of library functions was
written to implement the operators of the intermediate representation used�BB����
Problems with optimized code have been detected�

�� Decompilation � What has been done�

As illustrated by this research� decompiler compilers can be constructed automatically
if the set of compiler speci�cations and object code produced for each clause of the
speci�cation is known� In general� this is not the case as compiler writers do not
disclose their compiler speci�cations� Only customized compilers and decompilers can
be built by this method� It is also noted that optimizations produced by the optimization
stage of a compiler are not handled by this method� and that real executable programs
cannot be decompiled by the decompilers generated by the method described� The
problem of separating instructions from data is not addressed� nor is the problem of
determining the data types of variables used in the executable program� In conclusion�
decompiler compilers can be generated automatically if the object code produced by a
compiler is known� but the generated decompilers cannot decompile arbitrary executable
programs�

���� C Decompiling System� ������ This decompiler takes as input executable

les from a DOS environment and produces C programs� The input
les need to
be compiled with Microsoft C version ��� in the small memory model�FZL���� Five
phases were described� recognition of library functions� symbolic execution� recognition
of data types� program transformation� and C code generation� The recognition of
library functions and intermediate language was further described in �FZ��� HZY����

The recognition of library functions for Microsoft C was done to eliminate subroutines
that were part of a library� and therefore produce C code for only the user routines�
A table of C library functions is built�into the decompiling system� For each library
function� its name� characteristic code �sequence of instructions that distinguish this
function from any other function�� number of instructions in the characteristic code�
and method to recognize the function were stored� This was done manually by
the decompiler writer� The symbolic execution translated machine instructions to
intermediate instructions� and represented each instruction in terms of its symbolic
contents� The recognition of data types is done by a set of rules for the collection of
information on di�erent data types and analysis rules to determine the data type in use�
The program transformation transforms storage calculation into address expressions�
e�g� array addressing� Finally� the C code generator transforms the program structure
by
nding control structures� and generates C code�

This decompiling system makes use of library function recognition to generate more
readable C programs� The method of library recognition is hand�crafted� and therefore
ine�cient if other versions of the compiler� other memory models� or other compilers
were used to compile the original programs� The recognition of data types is a �rst
attempt to recognize types of arrays� pointers and structures� but not much detail is
given in the paper� No description is given as to how an address expression is reached
in the intermediate code� and no examples are given to show the quality of the �nal C
programs�

Alpha AXP Migration Tools� ��� When Digital Equipment Corporation designed
the Alpha AXP architecture� the AXP team got involved in a project to run existing
VAX and MIPS code on the new Alpha AXP computers� They opted for a binary
translator which would convert a sequence of instructions of the old architecture
into a sequence of instructions of the new architecture� The process needed to be
fully automatic and to cater for code created or modi
ed during execution� Two

��� Previous Work �

parts to the migration process were de
ned� a binary translation� and a runtime
environment�SCK�����

The binary translation phase took binary programs and translated them into AXP
opcodes� It made use of decompilation techniques to understand the underlying
meaning of the machine instructions� Condition code usage analysis was performed
as these conditions do not exist on the Alpha architecture� The code was also analyzed
to determine function return values and
nd bugs �e�g� uninitialized variables�� MIPS
has standard library routines which are embedded in the binary program� In this case�
a pattern matching algorithm was used to detect routines that were library routines�
such routines were not analysed but replaced by their name� Idioms were also found
and replaced by an optimal instruction sequence� Finally� code was generated in the
form of AXP opcodes� The new binary
le had both� the new code and the old code�

The runtime environment executes the translated code and acts as a bridge between the
new and old operating systems �e�g� di�erent calling standards� exception handling��
It had a built�in interpreter of old code to run old code not discovered or nonexistent
at translation time� This was possible because the old code was also saved as part of
the new binary
le�

Two binary translators were written� VEST� to translate from the OpenVMS VAX
system to the OpenVMS AXP system� and mx� to translate ULTRIX MIPS images to
DEC OSF�� AXP images� The runtime environments for these translators were TIE
and mxr respectively�

This project illustrates the use of decompilation techniques in a modern translation
system� It proved successful for a large class of binary programs� Some of the programs
that could not be translated were programs that were technically infeasible to translate�
such as programs that use privileged opcodes� or run with superuser privileges�

Source�PROM Comparator� ��� A tool to demonstrate the equivalence of source
code and PROM contents was developed at the Nuclear Electric plc� UK� to verify
the correct translation of PL�M�	� programs into PROM programs executed by safety
critical computer controlled systems�PW����

Three stages are identi
ed� the reconstitution of object code
les from the PROM

les� the disassembly of object code to an assembler�like form with help from a name�
table built up from the source code� and decompilation of assembler programs and
comparison with the original source code� In the decompiling stage� it was noted
that it was necessary to eliminate intermediate jumps� registers and stack operations�
identify procedure arguments� resolve indexes of structures� arrays and pointers� and
convert the expresssions to a normal form� In order to compare the original program
and the decompiled program� an intermediate language was used� The source program
was translated to this language with the use of a commercial product� and the output
of the decompilation stage was written in the same language� The project proved to
be a practical way of verifying the correctness of translated code� and to demonstrate
that the tools used to create the programs �compiler� linker� optimizer� behave reliably
for the particular safety system analyzed�

This project describes a use of decompilation techniques� to help demonstrate the equiv�
alence of high�level and low�level code in a safety�critical system� The decompilation

�� Decompilation � What has been done�

stage performs much of the analysis� with help from a symbol table constructed from
the original source program� The task is simpli�ed by the knowledge of the compiler
used to compile the high�level programs�

In the last years� commercial vendor�speci
c decompilers have been manufactured� These
decompilers are targetted at the decompilation of binary
les produced by database
languages� such as Clipper and FoxPro� No information on the techniques used to decompile
these programs is given by their manufacturers� The following list mentions some of these
commercial decompilers�

Valkyrie� ��� Visual decompiler for Clipper Summer �	�� manufactured by CodeWorks
�Val����

OutFox� ��� Decompiler for encrypted FoxBASE! programs �Out����

ReFox� ��� Decompiles encrypted FoxPro
les� manufactured by Xitech Inc �HHB�����

DOC� ��� COBOL decompiler for AS���� and System��	� Converts object programs
into COBOL source programs which can be modi
ed by the programmer� Manufac�
tured by Harman Resources �Cob����

Uniclip� ��� Decompiler for Clipper Summer �	� EXE
les� manufactured by Stro Ware
�Unc����

Clipback� ��� Decompiler for Summer �	� executables� manufactured by Intelligent
Information Systems �Unc����

Brillig� ��� Decompiler for Clipper ��X �exe and �obj
les� manufactured by APTware
�Bri����

Chapter �

Run�time Environment

B
efore considering decompilation� the relations between the static binary code of the pro�
gram and the actions performed at run�time to implement the program are presented�

The representation of objects in a binary program di�ers between compilers� elementary
data types such as integers� characters� and reals are often represented by an equivalent
data object in the machine �i�e� a
xed size number of bytes�� whereas aggregate objects
such as arrays� strings� and structures are represented in various di�erent ways�

Throughout this thesis� the word subroutine is used as a generic word to denote a procedure
or a function� the latter two words are used only when there is certainty as to what the
subroutine really is� that is� a subroutine that returns a value is a function� and a subroutine
that does not return a value is a procedure�

��� Storage Organization

A high�level language program is composed of one or more subroutines� called the user sub�
routines� The corresponding binary program is composed of the user subroutines� library
routines that were invoked by the user program� and other subroutines linked in by the
linker to provide support for the compiler at run�time� The general format of the binary
code of a program is shown in Figure ���� The program starts by invoking compiler start�up
subroutines that set up the environment for the compiler� this is followed by the user�s main
program subroutine� which invokes library routines linked in by the linker� and is
nalized
by a series of compiler subroutines that restore the state of the machine before program
termination�

user program

start�up code

exit code

�including library
subroutines�

Figure ���� General Format of a Binary Program

�� Run�time Environment

For example� a �hello world� C program compiled with Borland Turbo C v��� has over �
di�erent subroutines� The start�up code invokes up to �� di�erent subroutines to set up
the compiler�s environment� The user�s main program is composed of one procedure� This
procedure invokes the printf�� procedure which then invokes up to 	 di�erent subroutines
to display the formatted string� Finally� the exit code invokes � subroutines to restore the
environment and exit back to DOS� Sample skeleton code for this program is shown in
Figure ���

helloc proc far

mov dx�DGROUP � dx 		 GROUP segment adr

mov cs�DGROUP���dx

� save several vectors and install default divide by zero handler

call SaveVectors

� calculate environment size� determine amount of memory needed�

� check size of the stack� return to DOS memory allocated in excess�

� set far heap and program stack� reset uninitialized data area�

� install floating point emulator

push cs

call ds����emu�st�

� prepare main arguments

call �setargv�

call �setenvp�

� initialize window sizes

call ds����crt�st�

� invoke main�argc�argv�envp�

push word ptr environ�

push word ptr �argv�

push word ptr �argc�

call main� � user�s main�� program

� flush and close streams and files

push ax

call exit�

helloc endp

Figure ��� Skeleton Code for a �hello world� Program

In a binary program� subroutines are identi
ed by their entry address� there are no names
associated with subroutines� and it is unknown whether the subroutine is a procedure or a
function before performing a data �ow analysis on the registers de
ned and used by these
subroutines� It is said that a subroutine that invokes another subroutine is the caller� and
the invoked subroutine is the callee�

��� Data Types ��

����� The Stack Frame

Each subroutine is associated with a stack frame during run�time� The stack frame is the
set of parameters� local variables� and return address of the caller subroutine� as shown in
Figure ���� The parameters in the stack frame represent the actual parameters of a partic�
ular invocation of the subroutine� information on the formal parameters of the subroutine
are not stored elsewhere in the binary
le� The stack mark represents the return address of
the caller �so that control can be transferred to the caller once the callee is
nished�� and
the caller�s frame pointer �register bp in the Intel architecture�� which is a reference point
for o�sets into the stack frame� The local variables represent the space allocated by the
subroutine once control has been transferred to it� this space is available to the subroutine
only while it is active �i�e� not terminated��

�

�

�

�

�
�

�

bp � o�set

low memory

high memory

Local variables

Stack mark

Parameters

bp � o�set

bp

sp

Figure ���� The Stack Frame

Once the frame pointer has been set �i�e� register bp�� positive o�sets from the frame
pointer access parameters and the stack mark� and negative o�sets access local variables�
The convention used in diagrams relating to the stack frame is as follows� the stack grows
downwards from high to low memory� as in the Intel architecture�

The stack frame may also contain other
elds� as shown in Figure ���� These
elds are not
used by all languages nor all compilers�ASU	�a�� The return value
eld is used in some
languages by the callee to return the value of a function back to the caller� these values are
more often returned in registers for e�ciency� The control link points to the stack frame
of the caller� and the access link points to the stack frame of an enclosing subroutine that
holds non�local data that is accessible from this subroutine�

��� Data Types

Data objects are normally stored in contiguous memory locations� Elementary data types
such as characters� integers� and longs� can be held in registers while an operation is per�
formed on them� Aggregate data types such as arrays� strings� and records� cannot be held
in registers in their entirety because their size is normally beyond the size of a register�
therefore it is easier to access them through a pointer to their starting address�

�	 Run�time Environment

Local variables

Return value

Stack mark

Access link

Control link

Parameters

Figure ���� The Stack Frame

The sizes of di�erent data types for the i	�	� architecture are shown in Figure ���� This
machine has a word size of �� bits� Sizes are given in 	�bit bytes�

Data Type Size �bytes�
character �
integer
long �
real �

long real 	
near pointer
far pointer �
other types � �

Figure ���� Size of Di�erent Data Types in the i	�	�

����� Data Handling in High�level Languages

Aggregate data types are handled in several di�erent ways by di�erent compilers� This
section describes di�erent formats used by C� Pascal� Fortran� and Basic compilers�
according to �Mic	���

Array

An array is a contiguous piece of memory that holds one or more items of a certain type�
Arrays are implemented in memory as a series of rows or columns� depending on the order
used by the language�

� Row�major order� the elements of a multidimensional array are stored by row order�
that is� one row after the other� This order is used by C and Pascal compilers�

��� Data Types �

� Column�major order� the elements of a multidimensional array are stored in column
order rather than row order� This order is used by Fortran and Basic compilers� Some
Basic compilers have a compile option to use row�major order�

In most languages� the size of the array is known at compile time� this is the case of C�
Pascal and Fortran� Basic allows for run�time declared array sizes� therefore an array needs
to have an array�descriptor to hold the size of the array and a pointer to the physical
location in memory where the array is stored�

String

A string is a sequence of characters� Di�erent languages use di�erent representations for a
string� such as the following�

� C format� a string is an array of bytes terminated by a null character �i�e� ���

� Fortran format� a string is a series of bytes at a a
xed memory location� hence no
delimiter is used or needed at the end of the string�

� Pascal format� common Pascal compilers have types of strings� STRING and
LSTRING� The former is a
xed�length string and is implemented in the Fortran
format� The latter is a variable�length string and is implemented as an array of
characters that holds the length of the string in the
rst byte of the array� Standard
Pascal does not have a STRING or LSTRING type�

� Basic format� a string is implemented as a ��byte string�descriptor� the
rst bytes
hold the length of the string� and the next bytes are an o�set into the default data
area which holds the string� This area is assigned by Basic�s string�space management
routines� and therefore is not a
xed location in memory�

Record

A record is a contiguous piece of memory that holds related items of one or more data types�
Di�erent names are used for records in di�erent languages� struct in C� record in Pascal�
and user�de
ned type in Basic� By default� C and Pascal store structures in unpacked
storage� word�aligned� except for byte�sized objects and arrays of byte�sized objects� Basic
and some C and Pascal compilers store structures in packed storage�

Complex Numbers

The Fortran COMPLEX data type stores �oating point numbers in the following way�

� COMPLEX�	� � bytes represent the real part� and the other � bytes represent the
�oating point number of the imaginary part�

� COMPLEX���� 	 bytes represent the real part� and the other 	 bytes the imaginary
part�

�� Run�time Environment

Boolean

The Fortran LOGICAL data type stores Boolean information in the following way�

� LOGICAL�� � byte holds the Boolean value �� or ��� and the other byte is left unused�

� LOGICAL��� � byte holds the Boolean value� and the other � bytes are left unused�

��� High�Level Language Interface

Compilers of high�level languages use a series of conventions to allow mixed�language
programming� so that a program can have some subroutines written in one language� and
other subroutines written in a di�erent language� and all these subroutines are linked in
together in the same program� The series of conventions relate to the way the stack frame
is set up� and the calling conventions used to invoke subroutines�

����� The Stack Frame

The stack mark contains the caller�s return address and frame pointer� The return address
varies in size depending on whether the callee is invoked using a near or far call� Near calls
are within the same segment and therefore can be referenced by an o�set from the current
segment base address� Far calls are in a di�erent segment� so both segment and o�set of
the callee are stored� For a �byte machine word architecture� the near call stores bytes
for the o�set of the caller� whereas the far call stores � bytes for the segment and o�set
of the caller� Register bp is used as the frame pointer� the contents of the caller�s frame
pointer is pushed onto the stack at subroutine entry so that it can be restored at subroutine
termination�

Entering a Subroutine

Register bp is established as the frame pointer by pushing its address onto the stack �i�e�
storing the frame pointer of the caller on the stack�� and copying the current stack pointer
register �sp� to bp� The following code is used in the i	�	� architecture�

push bp � save old copy of bp

mov bp� sp � bp 		 frame pointer

Allocating Local Data

A subroutine may reserve space on the stack for local variables� This is done by decrementing
the contents of the stack register sp by an even amount of bytes� For example� to allocate
space for integer variables� � bytes are reserved on the stack�

sub sp�

��� High�Level Language Interface ��

Preserving Register Values

The most widely used calling convention for DOS compilers demands that a subroutine
should always preserve the values of registers si� di� ss� ds� and bp� If any of these registers
is used in the callee subroutine� their values are pushed onto the stack� and restored before
subroutine return� For example� if si and di are used by a subroutine� the following code
is found after local data allocation�

push si

push di

Accessing Parameters

Parameters are located at positive o�sets from the frame pointer register� bp� In order to
access a parameter n� the o�set from bp is calculated by adding the size of the stack mark�
plus the size of the parameters between bp and parameter n� plus the size of parameter n�

Returning a Value

Functions returning a value in registers use di�erent registers according to the size of the
returned value� Data values of � byte are returned in the al register� bytes are returned
in the ax register� and � bytes are returned in the dx�ax registers� as shown in Figure ����

Data Size �bytes� Register
� AL
 AX
� DX � high byte

AX � low byte

Figure ���� Register Conventions for Return Values

Larger data values are returned using the following conventions�

� Function called by C� the callee must allocate space from the heap for the return value
and place its address in dx�ax�

� Function called by Pascal� Fortran or Basic� the caller reserves space in the stack
segment for the return value� and pushes the o�set address of the allocated space on
the stack as the last parameter� Therefore� the o�set address of the return value is at
bp � � for far calls� and bp � for near calls� as shown in Figure ����

Exiting the Subroutine

The stack frame is restored by popping any registers that were saved at subroutine entry�
deallocating any space reserved for local variables� restoring the old frame pointer �bp�� and
returning according to the convention in use�

� C convention� the caller adjusts the stack for any parameters pushed on the stack� A
ret instruction is all that is needed to end the subroutine�

�� Run�time Environment

��

and o�set

Return value o�set

Parameters

Local variables

Return o�set

Return value o�set

Parameters

bp � �

Old bp

bp � �

Local variables

Old bp

Return segment

Figure ���� Return Value Convention

� Pascal� Fortran� Basic convention� the callee adjusts the stack by cutting back the stack
with the required number of parameter bytes� A ret n instruction is used� where n is
the number of bytes of the parameters�

For example� the following code restores the registers di and si from the stack� deallocates
the space of the local variables by copying bp to sp� restores the frame pointer by popping
bp from the stack� and returns using the C convention�

pop di � restore registers

pop si

mov sp� bp � deallocate local variables

pop bp � restore bp

ret

����� Parameter Passing

Three di�erent methods are used to pass parameters on the Intel architecture under the
DOS operating system� C� Pascal� and register calling conventions� Mixtures of these calling
conventions are available in other operating systems and architectures� For example� in
OS�� the standard call uses C ordering to pass parameters� but the callee cuts back the
parameters from the stack in system calls�

C Calling Convention

The caller is responsible for pushing the parameters on the stack� and restoring them
after the callee returns� The parameters are pushed in right to left order� so that
a variable number of parameters can be passed to the callee� For example� for a C
function prototype void procX �int� char� long�� and a caller procedure that invokes
the procX�� procedure�

procN��

� int i� �� bp
 � ��

char c� �� bp
 � ��

long l� �� bp
 ��

procX �i� c� l��

�

��	 Symbol Table �

the following assembler code is produced�

push word ptr �bp
�� � high word of l

push word ptr �bp
� � low word of l

push �bp
�� � c

push word ptr �bp
�� � i

call procX � call function

add sp� � � restore the stack

Note that due to word alignment� the character c is stored as bytes on the stack even
though its size is one byte only�

Pascal Calling Convention

The caller is responsible for pushing the arguments on the stack� and the callee adjusts the
stack before returning� Arguments are pushed on the stack in left to right order� hence
a
xed number of arguments are used in this convention� For the previous example� the
calling of procX �i� c� l� produces the following assembler code in Pascal convention�

push word ptr �bp
�� � i

push �bp
�� � c

push word ptr �bp
�� � high word of l

push word ptr �bp
� � low word of l

call procX � call procX �procX restores stack�

Register Calling Convention

This convention does not push arguments on the stack but passes them in registers� therefore
the generated code is faster� Predetermined registers are used to pass arguments between
subroutines� and di�erent registers are used for di�erent argument sizes� Figure ��	 shows
the set of registers used by Borland Turbo C!! �Bor��� a maximum of � parameters can
be passed in registers� Far pointers� unions� structures� and real numbers are pushed on the
stack�

Parameter Type Register
Character al� dl� bl
Integer ax� dx� bx
Long dx�ax
Near pointer ax� dx� bx

Figure ��	� Register Parameter Passing Convention

��� Symbol Table

A decompiler uses a symbol table to store information on variables used throughout the
program� In a binary program� variables are identi
ed by their address� there are no names

	� Run�time Environment

associated with variables� Variables that have a physical memory address are global vari�
ables� their segment and o�set are used to access them� Variables that are located at a
negative o�set from the frame pointer are local variables to the corresponding stack frame�s
subroutine� and variables at positive o�sets are actual arguments to the subroutine� Since
register variables are used by compilers for e�ciency purposes� all registers are also con�
sidered variables initially� further analysis on registers determines whether they represent
register variables or not �see Chapter �� Section ������ Variables are assigned unique names
during code generation� as explained in Chapter ��

The symbol table must be able to provide information on an entry e�ciently� and handle a
varying number of variables� hence� a symbol table that grows dynamically if necessary is
desirable� The performance of the symbol table is measured in terms of the time taken to
access an entry and insert a new item to the table�

��	�� Data Structures

Symbol tables are represented by a variety of data structures� Some are more e�cient than
others� at the expense of more coding� To illustrate the di�erences between the various data
structures� let us assume the following data items are to be placed in the symbol table�

cs���F� � global variable

bp � � parameter

bp
 � � local variable

ax � register ax

bp
 � � local variable

Unordered List

An unordered list is a linked�list or an array of data items� Items are stored in the list in
a
rst�in basis �i�e� on the next available position�� An array implementation presents the
limitation of size� these limitations are avoided by the use of a linked�list implementation�
An access to this symbol table� for a list of n items is O�n�� Figure ��� shows the list built
for our example�

� � � � bp � 	cs
��F bp � � bp � � ax

Figure ���� Unordered List Representation

Ordered List

An ordered list is easier to access� since not all items of the list need to be checked to
determine whether an item is already in the list or not� Ordered lists can be searched using
a binary search� which provides an access time of O�log n�� Insertion of an item is costly�
since the list needs to remain ordered�

��	 Symbol Table 	�

Since there are di�erent types of variables in a binary program� and these items are identi
ed
in a di�erent way based on their type� an ordering within a type is possible� but the
four di�erent types must be access independently� Figure ���� shows the ordered list
representation of our example� a record that determines the type of the data item is used

rst� and each of the data types has an ordered list associated with it�

bp � 	

cs
��F

bp � �

bp � �

axregister

�

�

�

�

�

global

local

parameter

Figure ����� Ordered List Representation

Hash Table

A hash table is a mapping between a
xed number of positions in a table� and a possibly
large number of variables� The mapping is done via a hashing function which is de
ned
for all possible variables� can be computed quickly� provides an uniform probability for all
variables� and randomizes similar variables to di�erent table locations�

In open hashing� a hash table is represented by an array of a
xed size� and a linked�list
attached to each array position �bucket�� The linked�list holds di�erent variables that hash
to the same bucket� Figure ���� shows the hash table built for our example� as for ordered
lists� a record which determines the type of the variable is used
rst� and a hash table is
associated with each di�erent variable type�

cs
��F

bp � 	

bp � �

bp � �

local

ax

�

�

�

�
�

�

�

�

�

global

parameter

register

Figure ����� Hash Table Representation

	� Run�time Environment

Symbol Table Representation for Decompilation

A combination of the abovementioned methods is used for the purposes of decompilation�
The symbol table is de
ned in terms of the di�erent types of variables� global� local� pa�
rameter� and register� Each of these types is implemented in a di�erent way� For global
variables� since their address range is large� a hash table implementation is most suited� For
local variables and parameters� since these variables are o�sets from the frame pointer� and
are always allocated in an ordered way �i�e� there are no �gaps� in the stack frame�� they
are implemented by an ordered list on the o�set� the register bp does not need to be stored
since it is always the same� Finally� for registers� since there is a
xed number of registers�
an array indexed by register number can be implemented� array positions that have an as�
sociated item represent registers that are de
ned in the symbol table� This representation
is shown in Figure ����

cs
��F

� ��

�

�

�

�

�	

�
global

parameter

register

local

ax
���

�

Figure ���� Symbol Table Representation

Symbol tables are widely discussed in the literature� refer to �ASU	�a� FJ		a� Gou		� for
more information on symbol tables from a compiler point of view�

Chapter �

The Front�end

T he front�end is a machine dependent module which takes as input the binary source
program� parses the program� and produces as output the control �ow graph and inter�

mediate language representation of the program� The phases of the front�end are shown in
Figure ����

�

�

�

�

�

binary program

control �ow graph

Syntax analyzer

Semantic analyzer

Intermediate code generator

intermediate code

Control �ow graph generator

Figure ���� Phases of the Front�end

Unlike compilers� there is no lexical analysis phase in the front�end of the decompiler� The
lexical analyzer or scanner is the phase that groups characters from the input stream into
tokens� Specialized tools such as lex and scanGen have been designed to help automate the
construction of scanners for compilers�FJ		a�� Given the simplicity of machine language�
there is no need to scan the input bytes to recognize di�erent words that belong to the
language� all information is stored in terms of bytes or bits from a byte� and it is not
possible to determine what a particular byte represents �i�e� opcode� register� o�set� out
of context� The syntax analyzer determines what a series of bytes represent based on the
language description of the machine language�

��� Syntax Analysis

The syntax analyzer is the
rst phase of the decompiler� Its role is to group a sequence
of bytes into a phrase or sentence of the language� This sequence of bytes is checked for
syntactic structure� that is� that the string belongs to the language� Valid strings are rep�
resented by a parse tree� which is input into the next phase� the semantic analyzer� The

		 The Front�end

relation between the syntax analyzer and the semantic analyzer is shown in Figure ��� The
syntax analyzer is also known as the parser�

��

I�
�

�
��R

��
�

�
�

��

� � � � � � � � � �

� � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�� � � �

parse tree
Parser

program
source binary

Table

Semantic
Analyzer front�end

rest of

Symbol

Figure ��� Interaction between the Parser and Semantic Analyzer

The syntax of a machine language can be precisely speci
ed by a grammar� In machine
languages� only instructions or statements are speci
ed� there are no control structures as
in high�level languages� In general� a grammar provides a precise notation for specifying
any language�

The main di�culty of a decompiler parser is the separation of code from data� that is� the
determination of which bytes in memory represent code and which ones represent data�
This problem is inherent to the von Neumann architecture� and thus� needs to be addressed
by means of heuristic methods�

Syntax Errors

Syntax errors are seldom found in binary programs� as compilers generate correct code for a
compiled program to run on a machine� But� given that upgrades of a machine architecture
result in new machines that support all predecessor machines� the machine instruction set
of the new architecture is an extension of the instruction set of the old architecture� This
is the case of the i	��	�� which supports all predecessor i	�	�� i	��	�� i	�	�� and i	��	�
instruction sets� Therefore� if a parser is written for the i	�	�� all new machine instructions
are not recognized by the parser and must result in an error� On the other hand� if the
parser is written for the newest machine� the i	��	�� all instructions should be recognized
and no syntactic errors are likely to be encountered�

	���� Finite State Automaton

A Finite State Automaton �FSA� is a recognizer for a language� It takes as input a string�
and answers yes if the string belongs to the language and no otherwise� A string is a
sequence of symbols of a given alphabet� Given an arbitrary string� an FSA can determine
whether the string belongs to the language or not�

De�nition � A Finite State Automaton is a mathematical model that consists of�

� A �nite set of states S

� An initial state s�

parsa
Highlight

	�� Syntax Analysis 	

� A set of �nal or accept states F

� An alphabet of input symbols "

� A transition function T � state � symbol � state

An FSA can be graphically represented by transition diagrams� The components of these
diagrams are shown in Figure ���� The symbols from the alphabet label the transitions�
Error transitions are not explicitly represented in the diagram� and it is assumed that any
non�valid symbol out of a state labels a transition to an error state�

���� ����m� �����sx

accept state snstate sx

s�

initial state s� a transition

sn

Figure ���� Components of a FSA Transition Diagram

A wildcard language is a meta�language used to specify wildcard conditions in a
language�Gou		�� Two meta�symbols are used #�� and # �� The meta�symbol #�� represents
any sequence of zero or more symbols from the alphabet "� and # � represents any single
symbol from "�

Example � Let " � fa� b� cg� The language that accepts all strings starting with an a
is described by the wildcard expression aa�� and is represented in an FSA in the following
way�

�������� m�	

�

�
�

�

�a

Non�deterministic Finite State Automaton

An FSA is said to be non�deterministic �NFSA� whenever there are two or more transitions
out of a state labelled with the same symbol� or when the empty string ��� labels a transition�
In these cases� the next state is not uniquely identi
ed by a �state� symbol� tuple�

Deterministic Finite State Automaton

A deterministic
nite state automaton �DFSA� is a FSA that has no transitions labelled by
the � string� and that uniquely identi
es or determines the next state of a �state� symbol�
tuple�

Any NFSA can be converted into an equivalent DFSA by a method of subset construction�
This method has been explained in the literature� for example� refer to �ASU	�b� Gou		�
FJ		a� for details� A method to construct a minimum�state DFSA is also described in
�ASU	�b��

	� The Front�end

	���� Finite State Automatons and Parsers

Any machine language can be represented by an FSA that accepts or rejects arbitrary
strings� The alphabet " is the
nite set of hexadecimal numbers ����FF �i�e� numbers
represented by a byte�� and a string is a sequence of bytes� The strings that belong to this
language are those instructions recognized by the particular machine language�

Example � An FSA to recognize the i�
��� machine instruction
��E��� � sub cx� ��

needs to �rst determine that �� is an opcode �sub�� and that it takes two or more bytes as
operands� The second byte encodes the destination register operand �lower � bits�� and how
many bytes of other information there are after this byte� whenever the upper two bits are

or �� � more bytes follow this second byte� if these bits represent 	� 	 byte follows the second
byte� otherwise there are no more bytes as part of the destination operand� In our example�
the lower three bits are equivalent to 	� which is register cx� and the upper two bits are ��
which means there are no more bytes as part of the destination operand� Finally� the last
byte is the immediate constant operand� �� in this example� The FSA for this example is
shown in Figure ����

����
���� ����

���� ����m� �
������

�

����
Q

Q
QQs����F

�											�

�
�

	��	F
A��AF

E��EF

�

�

�

Figure ���� FSA example

A machine language can also be described in terms of a context�free grammar �CFG�� as
regular expressions are a subset of context�free grammars� An algorithm to mechanically
convert an NFSA into a CFG is presented in �ASU	�a�� CFGs are used to specify high�level
constructs that have an inherent recursive structure� and since machine languages do not
make use of recursive constructs� it is not necessary to de
ne them in terms of CFGs�

	���� Separation of Code and Data

Given the entry point to a program� it is the function of the syntax analyzer to parse ma�
chine instructions following all possible paths of the program� The main problem faced
by the parser is that data and code are represented in the same way in a von Neumann
machine� thus it is not easy to determine if the byte�s� that follows an instruction belongs
to another instruction or represents data� Heuristic methods need to be used in order to
determine data from code� as explained in this section�

Once the source binary program has been loaded into memory� the loader returns the ini�
tial start address of the program in memory� This address is the starting address for the
complete binary program� and thus� must be the address of an instruction in order for the
program to run� Furthermore� if the binary program has been checked against compiler
signatures� the initial starting address is the entry point to the main of the program� i�e�

parsa
Highlight

	�� Syntax Analysis 	�

the start address of the user�written program� skipping all compiler start up code� Fig�
ure ��� illustrates sample code for a �hello world� program� The entry point returned by
the loader is CS������ which is the entry point to the complete program �including compiler
start up code�� The entry point given by the compiler signature analyzer is CS���FA� which
is the start address of the main program� Throughout this thesis we will assume the entry
point is the one given by the compiler signature analyzer without loss of generality� The
explained methods are applicable to both cases� but more interesting examples are found
in the latter case� The technique for generating compiler signatures and detecting them is
given in Chapter 	�

helloc proc far

CS����� start� mov dx��

CS����� mov cs���dx

��� ��� � start
up code

CS����A call �main

CS����D ��� � exit code

helloc endp

��� ���

�main proc near

CS���FA push bp

CS���FB mov bp�sp

CS���FD mov ax����h

CS����� push ax

CS����� call �printf

CS����� pop cx

CS���� pop bp

CS����� ret

�main endp

Figure ���� Sample Code for a �hello world� Program

A paper by R�N� Horspool and N� Marovac focused on the problem of separation of code
from data� This paper mentioned that this problem is equivalent to the halting problem�
as it is impossible to separate data from instructions in a von Neumann architecture that
computes both data addresses and branch destination addresses at execution time�HM����
An algorithm to
nd the maximum set of locations holding instructions was given� This
modi
cation of the original problem is equivalent to a combinatorial problem of searching
for a maximal set of trees out of all the candidate trees� for which a branch�and�bound
method is applied� The algorithm is proved to be NP�Complete�

As it turns out� in dense machine instruction sets �such as in the Intel architecture�� the
given algorithm does not work� as almost any byte combination is a valid machine instruc�
tion� and therefore it is hard to determine the bounds of the code since it is hard to know
when data has been reached� A simple counter�example to this algorithm is given by a case

parsa
Highlight

	� The Front�end

table stored in the code segment �see Figure ����� After the indexed jump instruction at
CS��DDB� which indexes into the case table� the table itself is de�ned starting at CS��DE��
but yet it is treated as code by the algorithm as it includes valid bytes for instructions� In
this i�
��� code example� �E is equivalent to push CS� �B is equivalent to sub which takes
one other byte as argument� �E in this case� to result in sub ax��bp�� and so on� The
produced code is therefore wrong�

CS��DDB jmp CS��DE��bx�

CS��DE� �E�B � push CS

CS��DE� �E�� � sub ax��bp�

���

Figure ���� Counter�example

This section presents a di�erent method to determine code from instructions in a binary
program that has been loaded into memory� It provides heuristic methods to determine
special cases of data found in between sections of code�

The Process

As previously mentioned� the process of determining data from code is based on the knowl�
edge that the initial entry point to the program is an instruction� From this instruction
onwards� instructions are parsed sequentially along this path� until a change in the �ow
of control or an end of path is reached� In the former case� the target address�es� acts as
new entry points into memory� as the address must hold a valid instruction in order for the
program to continue execution� In the latter case� the end of the current path is reached
and no more instructions are scanned along this path as we cannot determine whether these
next bytes are code or data�

Changes in the �ow of control are due to jumps and procedure calls� A conditional jump
branches the �ow of control in two� the target branch address is followed whenever the con�
dition is true� otherwise the address following the conditional branch is followed� Both paths
are followed by the parser in order to get all possibly executable code� An unconditional
jump transfers the �ow of control to the target address� this unique path is followed by the
parser� A procedure call transfers control to the invoked procedure� and once it returns� the
instructions following the procedure call are parsed� In the case that the procedure does
not return� the bytes following the procedure call are not parsed as it is not certain what
these bytes are �code or data��

An end of path is reached whenever a procedure return instruction or an end of program
is met� The end of program is normally speci
ed by a series of instructions that make
the operating system terminate the current process �i�e� the program�� This sequence of
instructions varies between operating systems� so they need to be coded for the speci
c
source machine� Determining whether the end of program is met �i�e� the program
nishes

yasamin
Highlight

	�� Syntax Analysis 	

or halts� is not equivalent to solving the halting problem though� as the path that is
being followed is not necessarily a path that the executable program will follow� i�e� the
condition that branches onto this path might never become true during program execution�
for example� programs in an in
nite loop�

Example � On the Intel architecture� the end of a program is speci�ed via interrupt
instructions� There are di�erent methods to terminate a program� some of these methods
make use of the program segment pre�x� commonly referred to as the PSP� refer to
Appendix B for more information on the PSP� There are di�erent ways of terminating a
program under DOS�

	� Terminate process with return code� int ��h� function �Ch� This is the most
commonly used method in �exe �les�

�� Terminate process� int ��h� The code segment� cs� needs to be pointing to the PSP�
This method is normally used in �com �les as cs already points to the PSP segment�

�� Warm boot�Terminate vector� o�set

h in the PSP contains an int ��h instruction�
Register cs must be pointing to the PSP segment�

�� Return instruction� the return address is placed on the stack before the program starts�
When the program is to be �nished� it returns to this address on the stack� This method
was used in the CP�M operating system as the address of the warm boot vector was on
the stack� Initial DOS �com programs made use of this technique�

�� Terminate process function� int ��h� function

h� Register cs must point to the
PSP�

�� Terminate and stay resident� int ��h� Register cs must point to the PSP�

� Terminate and stay resident function� int ��h� function �	h�

Determining whether a procedure returns �i�e�
nishes or halts� or not is di�cult� as the
procedure could make use of self�modifying code or execute data as code and terminate in
an instruction within this data� In general� we are interested in a solution for normal cases�
as aberrant cases require a step debugger tool and user input to solve the problem� A pro�
cedure does not return if it reaches the end of program or invokes a procedure that reaches
the end of program �e�g� a procedure that invokes exit��� in C�� Determining whether a
procedure has reached the end of program is possible by emulation of the contents of the
registers that are involved in the sequence of instructions that terminate the program� In
the case of Example �� keeping track of registers ah� and cs in most cases�

This initial algorithm for separation of code from data is shown in Figure ���� In order to
keep track of registers� a machState record of register values is used� A state variable of
this type holds the current values of the registers �i�e� the current state of the machine��
A bitmap of bits per memory byte is used to store information regarding each byte that
was loaded into memory�

� �� represents an unknown value �i�e� the memory location has not been analyzed��

� �� represents a code byte�

� The Front�end

� �� represents a data byte�

� �� represents a byte that is used as both� data and code�

The algorithm is implemented recursively� Each time a non fall�through path needs to be
followed� a copy of the current state is made� and the path is followed by a recursive call
to the parse procedure with the copy of the state�

Indirect Addressing Mode

The indirect addressing mode makes use of the contents of a register or memory location
to determine the target address of an instruction that uses this addressing mode� Indirect
addressing mode can be used with the unconditional jump �e�g� to implement indexed case
tables� and the procedure call instructions� The main problem with this addressing mode is
that the contents of memory can be changed during program execution� and thus� a static
analysis of the program will not provide the right value� and is not able to determine if
the memory location has been modi
ed� The same applies to register contents� unless the
contents of registers is being emulated� but again� if the register is used within a loop� the
contents of the register will most likely be wrong �unless loops are emulated also��

In the i	�	�� an indirect instruction can be intra�segment or inter�segment� In the former
case� the contents of the register or memory location holds a ���bit o�set address� in the
latter case� a ��bit address �i�e� segment and o�set� is given�

Indirect procedure calls are used in high�level languages like C to implement pointers to
function invocation� Consider the following C program�

typedef char ��tfunc����

tfunc func��� 	 �func�� func� �

char func��� ��� some code here ��

char func��� ��� some code here ��

main��

�

func������

func������

In the main program� functions func��� and func��� are invoked by means of a function
pointer and an index into the array of such functions� The disassembled code of this program
looks like this�

CS����� B��� � address of proc� ���B��

CS����� C��� � address of proc� ���C��

���

proc�� PROC FAR

CS���B� push bp

��� ���

CS���C� CB retf

parsa
Highlight

	�� Syntax Analysis
�

procedure parse �machState �state�

done 	 FALSE�

while �� done�

getNextInst �state� !inst��

if �alreadyParsed �inst�� �� check if instruction already parsed ��

done 	 TRUE�

break�

end if

setBitmap �CODE� inst��

case �inst�opcode� of

conditional jump�

�stateCopy 	 �state�

parse �stateCopy�� �� fall
through ��

state
"ip 	 targetAdr �inst�� �� target branch address ��

if �hasBeenParsed �state
"ip�� �� check if code already parsed ��

done 	 TRUE�

end if

unconditional jump�

state
"ip 	 targetAdr �inst�� �� target branch address ��

if �hasBeenParsed �state
"ip�� �� check if code already parsed ��

done 	 TRUE�

end if

procedure call�

�� Process non
library procedures only ��

if �� isLibrary �targetAdr �inst���

�stateCopy 	 �state�

stateCopy
"ip 	 targetAdr �inst��

parse �stateCopy�� �� process target procedure ��

end if

procedure return�

done 	 TRUE� �� end of procedure ��

move�

if �destination operand is a register�

updateState �state� inst�sourceOp� inst�destOp��

end if

interrupt�

if �end of program via interrupt�

done 	 TRUE� �� end of program ��

end if

end case

end while

end procedure

Figure ���� Initial Parser Algorithm

� The Front�end

proc�� ENDP

proc�� PROC FAR

CS���C� push bp

��� ���

CS���D� CB retf

proc�� ENDP

main PROC FAR

CS���D� push bp

CS���D� �BEC mov bp� sp

CS���DB FF�E���� call ���� � intra
segment indirect call

CS���DF FF�E���� call ���� � intra
segment indirect call

CS���E� D pop bp

CS���E� CB retf

main ENDP

The function pointers have been replaced by the memory o�set of the address that holds
the address of each procedure �i�e� �B� and �C� respectively�� If these addresses have not
been modi
ed during program execution� checking the contents of these memory locations
provides us with the target address of the function�s�� This is the implementation that we
use� The target address of the function is replaced in the procedure call instruction� and an
invocation to a normal procedure is done in our decompiled C program� as follows�

void proc���� ��� some code ��

void proc���� ��� some code ��

void main��

�

proc�����

proc�����

Case Statements

High�level languages implement multiway �or n�way� branches via a high�level construct
known as a case statement� In this construct� there are n di�erent possible paths to be
executed �i�e� n di�erent branches�� There is no low�level machine instruction to represent
this construct� therefore di�erent methods are used by compiler writers to de
ne a case

table�

If the number of cases is not too great �i�e� less than ���� a case is implemented by a
sequence of conditional jumps� each of which tests for an individual value and transfers
control to the code for the corresponding statement� Consider the following fragment of
code in assembler

cmp al� � � start of case

je lab�

cmp al� �Fh

	�� Syntax Analysis
�

je lab�

cmp al�

je lab�

cmp al� ��h

je lab

cmp al� �Bh

je lab�

jmp endCase

lab�� ���

���

lab�� ���

���

endCase� ��� � end of case

In this code fragment� register al is compared against � di�erent byte values� if the result is
equal� an unconditional jump is performed to the label that handles the case� If the register
is not equal to any of the � options� the program unconditionally jumps to the end of the
case�

A more compact way to implement a case statement is to use an indexed table that holds n
target label addresses� one for each of the corresponding n statements� The table is indexed
into by an indexed jump instruction� Before indexing into the table� the lower and upper
bounds of the table are checked for� so that no erroneous indexing is done� Once it has been
determined that the index is within the bound� the indexed jump instruction is performed�
Consider the following fragment of code�

cs��DCF cmp ax� ��h � ��h 		 �

cs��DD� jbe startCase

cs��DD jmp endCase

cs��DD� startCase�

mov bx� ax

cs��DD� shl bx� �

cs��DDB jmp word ptr cs��DE��bx� � indexed jump

cs��DE� �E�� � dw lab� � start of indexed table

cs��DE� �E�F � dw lab�

���

cs��EOE ��F � dw lab� � end of indexed table

cs��E�� lab��

���

cs���C� lab��

���

cs���F endCase� � end of case

���

The case table is de
ned in the code segment as data� and is located immediately after
the indexed jump and before any target branch labels� Register ax holds the index into the
table� This register is compared against the upper bound� �� If the register is greater than
�� the rest of the sequence is not executed and the control is transferred to labZ� the
rst
instruction after the end of the case� On the other hand� if the register is less or equal to

	 The Front�end

�� labA is reached and register bx is set up as the o�set into the table� Since the size of
the word is � the case table has o�set labels of size � so the initial index into the table
is multiplied by two to get the correct o�set into the �byte table� Once this is done� the
indexed jump instruction determines that the case table is in segment cs and o�set �DE�
�i�e� the next byte in memory in this case�� Therefore� the target jump address is any of
the � di�erent options available in this table�

A very similar implementation of case statements is given by a case table that is located
after the end of the procedure� and the index register into the table is the same as the
register that holds the o�set into the table �register bx in the following fragment of code��

cs��BE� cmp bx� ��h � ��h 		 �

cs��BEA jbe startCase

cs��BEC jmp jumpEnd

cs��BEF startCase�

shl bx� �

cs��BF� jmp word ptr cs��FB��bx� � indexed jump

cs��BF� jumpEnd�

jmp endCase

cs��BF� lab��

���

cs��FC lab��

���

cs��F�� endCase� � end of case

���

cs��FB� ret � end of procedure

cs��FB� �BF� � dw lab� � start of indexed table

cs��FBA �C� � dw lab�

���

cs��FE� �FC � dw lab� � end of indexed table

A third way to implement a case statement is to have the case table following all indexed
branches� In this way� the code jumps over all target jump addresses� checks for upper
bounds of the indexed table ��� in the following fragment of code�� adjusts the register that
indexes into the table� and branches to this location�

cs��C� jmp startCase

cs��C�� lab�

��� ���

cs���� lab���

��� ���

cs����� lab��

��� ���

cs���B� ���� � dw endCase � Start of indexed table

cs���BA ���� � dw lab�

��� ���

cs���F� ��� � dw lab�� � End of indexed table

cs���F� startCase�

	�� Syntax Analysis

cmp ax� �Fh � �Fh 		 ��

cs���F� jae endCase

cs���FB xchg ax� bx

cs���FC shl bx� �

cs���FE jmp word ptr cs���B��bx� � indexed jump

cs����� endCase�

���

cs����� ret

A di�erent implementation of case statements is by means of a string of character options�
as opposed to numbers� Consider the following code fragment�

cs���A C�C���E�F ����������� � db �LlhFNoxXudiscpneEfgG��

cs���� �����E����� �����

cs���F ���C � dw lab� � start of table

cs���� ���� � dw lab�

��� ���

cs��A� �DF � dw lab��

��� ���

cs��C procStart�

push bp

��� ���

cs����� mov di� cs

cs����� mov es� di � es 	 cs

cs����� mov di� ��Ah � di 	 start of string

cs����C mov cx� ��h � cx 	 upper bound

cs����F repne scasb

cs����� sub di� ��Bh

cs����� shl di� �

cs����� jmp word ptr cs���F�di� � indexed jump

cs����C lab��

��� ���

cs���FF lab���

��� ���

cs���� ret

The string of character options is located at cs���A� Register al holds the current charac�
ter option to be checked� es�di points to the string in memory to be compared against� and
the repne scasb instruction
nds the
rst match of register al in the string pointed to by
es�di� Register di is left pointing to the character after the match� This register is then
subtracted from the string�s initial address plus one� and it now indexes into an indexed
jump table located before the procedure on the code segment� This method is compact and
elegant�

Unfortunately� there is no
xed representation of a case statement� and thus� the binary
code needs to be manually examined in the
rst instance to determine how the case state�
ment was implemented� Di�erent compilers use di�erent implementations� but normally
a speci
c vendor�s compiler uses only one or two di�erent representations of case tables�

� The Front�end

The determination of a case table is a heuristic method that handles a prede
ned set of
generalized implementations� The more implementation methods that are handled by the
decompiler� the better output it can generate� As heuristic methods are used� the right
preconditions need to be satis
ed before applying the method� i�e� if and indexed table
is met and the bound of the indexed table cannot be determined� the proposed heuristic
method cannot be applied�

Final Algorithm

The
nal algorithm used for data�code separation is shown in Figure ��	� The algorithm
is based on the algorithm of Figure ���� but expands on the cases of indexed jumps and
indirect jumps and calls�

��� Semantic Analysis

The semantic analysis phase determines the meaning of a group of machine instructions�
collects information on the individual instructions of a subroutine� and propagates this
information across the instructions of the subroutine� In this way� base data types such as
integers and long integers are propagated across the subroutine� The relation of this phase
with the syntax analyzer and intermediate code generator is shown in Figure ����

De�nition � An identi�er ��ident�� is either a register� local variable �negative o�set
from the stack�� parameter �positive o�set from the stack�� or a global variable �location in
memory��

	���� Idioms

The semantic meaning of a series of instructions is sometimes given by an idiom� These are
sequences of instructions that represent a high�level instruction�

De�nition � An idiom is a sequence of instructions that has a logical meaning which
cannot be derived from the individual instructions�

Most idioms are widely known to the compiler community� as they are a series of instructions
that perform an operation in a unique or more e�cient way than doing it with di�erent
instructions� The following sections illustrate some of the best known idioms�

Subroutine Idioms

When entering a subroutine� the base register� bp� is established to be the frame pointer
by copying the value of the stack pointer �sp� into bp� The frame pointer is used to access
parameters and local data from the stack within that subroutine� This sequence of instruc�
tions is shown in Figure ����� The high�level language subroutine prologue sets up register
bp to point to the current stack pointer� and optionally allocates space on the stack for local
static variables� by decreasing the contents of the stack pointer sp by the required number
of bytes� This idiom is represented by an enter instruction that takes the number of bytes
reserved for local storage�

	�� Semantic Analysis
�

procedure parse �machState �state�

done 	 FALSE�

while �� done�

getNextInst �state� !inst��

if �alreadyParsed �inst�� �� check if instruction already parsed ��

done 	 TRUE� break�

end if

setBitmap �CODE� inst��

case �inst�opcode� of

conditional jump�

�stateCopy 	 �state�

parse �stateCopy�� �� fall
through ��

state
"ip 	 targetAdr �inst�� �� target branch address ��

if �hasBeenParsed�state
"ip�� �� check if code already parsed ��

done 	 TRUE�

end if

unconditional jump�

if �direct jump�

state
"ip 	 targetAdr�inst�� �� target branch address ��

if �hasBeenParsed�state
"ip�� �� check if code already parsed ��

done 	 TRUE�

end if

else �� indirect jump ��

check for case table� if found� determine bounds of the table�

if �bounds determined�

for �all entries i in the table�

�stateCopy 	 �state�

stateCopy
"ip 	 targetAdr�targetAdr�table�i����

parse �stateCopy��

end for

else �� cannot continue along this path ��

done 	 TRUE�

end if

end if

procedure call� �� Process non
library procedures only ��

if �� isLibrary �targetAdr �inst���

�stateCopy 	 �state�

if �direct call�

stateCopy
"ip 	 targetAdr�inst��

else �� indirect call ��

stateCopy
"ip 	 targetAdr�targetAdr�inst���

end if

parse �stateCopy�� �� process target procedure ��

end if

�� other cases �procedure return� move� interrupt� remain the same ��

end case

end while

end procedure

Figure ��	� Final Parser Algorithm

� The Front�end

Intermediate
Code Generator

�

�

��

�Z
Z

Z
Z

Z
ZZ� �����������

�� � � � �� � � �

rest of

� � � � � � � � � �

� � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

source binary
program

Parser

Symbol
Table

tree
parse

Analyzer
Semantic

front�end

Figure ���� Interaction of the Semantic Analyzer

push bp

mov bp� sp

�sub sp� immed�

�

enter immed� �

Figure ����� High�level Subroutine Prologue

Once the subroutine prologue is encountered� any pushes on the stack represent registers
whose values are to be preserved during this subroutine� These registers could act as regis�
ter variables �i�e� local variables� in the current subroutine� and thus are �agged as possibly
being register variables� Figure ���� shows registers si and di begin pushed on the stack�

push si

push di

Figure ����� Register Variables

Finally� to exit a subroutine� any registers saved on the stack need to be popped� any data
space that was allocated needs to be freed� bp needs to be restored to point to the old frame
pointer� and the subroutine then returns with a near or far return instruction� Figure ���
shows sample trailer code�

Calling Conventions

The C calling convention is also known as the C parameter�passing sequence� In this con�
vention� the caller pushes the parameters on the stack� in the reverse order in which they
appear in the source code �i�e� right to left order�� and then invokes the procedure� After
procedure return� the caller restores the stack by either popping the parameters from the

	�� Semantic Analysis

pop di � Restore registers

pop si

mov sp�bp � Restore sp

pop bp � Restore bp

ret�f� � Return

Figure ���� Subroutine Trailer Code

stack� or adding the number of parameter bytes to the stack pointer� In either case� the
total number of bytes used in arguments is known� and is stored for later use� The instruc�
tion�s� involved in the restoring of the stack are eliminated from the code� The C calling
convention is used when passing a variable number of arguments� as the callee does not
need to restore the stack� Figure ���� shows the case in which pop instructions are used
to restore the stack� The total number of bytes is computed by multiplying the number of
pops by �

call�f� proc�X

pop reg

�pop reg� reg in �ax� bx� cx� dx

�

proc�X�numArgBytes 	 � � numPops

sets CALL�C flag

Figure ����� C Calling Convention � Uses pop

Figure ���� shows the case in which the stack is restored by adding the number of argument
bytes to the stack� This value is stored for later use� and the instruction that restores the
stack is eliminated for further analysis� It has been found that when or � bytes were used
for arguments� the stack is restored by popping these bytes from the stack� This is due
to the number of cycles involved in the two di�erent operations� each pop reg instruction
takes � byte� and an add sp�immed instruction takes � bytes� Most likely� the binary code
had been optimized for space rather than speed� because a pop reg instruction on the i	�	�
takes 	 cycles� where as an add sp�immed instruction takes � cycles�

The Pascal calling convention is also known as the Pascal parameter�passing sequence� In
this convention� the caller pushes the parameters on the stack in the same order as they
appear in the source code �i�e� left to right order�� the callee procedure is invoked� and the
callee is responsible for adjusting the stack before returning� It is therefore necessary for the
callee to know how many parameters are passed� and thus� it cannot be used for variable
argument parameters� Figure ���� shows this convention�

�� The Front�end

call�f� proc�X

add sp� immed

�

proc�X�numArgBytes 	 immed

sets CALL�C flag

Figure ����� C Calling Convention � Uses add

ret�f� immed

�

proc�X�numArgBytes 	 immed

sets CALL�PASCAL flag

Figure ����� Pascal Calling Convention

Long Variable Operations

Long variables are stored in memory as two consecutive memory or stack locations� These
variables are normally identi
ed when simple addition or subtraction operations are per�
formed on them� The idioms used for these operations are generally used due to their
simplicity in number of instructions�

Figure ���� shows the instructions involved in long addition� The low parts of the long
variable�s� are added with an add instruction� which sets up the carry �ag if there is an
over�ow� The high parts are then added taken into account the carry �ag� as if there were
an over�ow of � in the low part� this � needs to be added to the high part� Thus� a adc

�add with carry� instruction is used to add the high parts�

add ax� �bp
��

adc dx� �bp
��

�

dx�ax 	 dx�ax � �bp
����bp
��

Figure ����� Long Addition

	�� Semantic Analysis ��

In a similar way� long subtraction is performed� The low parts are
rst subtracted with a
sub instruction� If there is a borrow� the carry �ag is set� Such under�ow is taken into
consideration when subtracting the high parts� as if there were an over�ow in the low part�
a borrow needs to be subtracted from the source high part operand� Thus� an sbb �subtract
with borrow� instruction is used� Figure ���� shows this case�

sub ax� �bp
��

sbb dx� �bp
��

�

dx�ax 	 dx�ax
 �bp
����bp
��

Figure ����� Long Subtraction

The negation of a long variable is done by a sequence of � instructions� the high part is
negated� then the low part is negated� and
nally� zero is subtracted with borrow from the
high part in case there was an under�ow in the negation of the low part� This idiom is
shown in Figure ���	�

neg regH

neg regL

sbb regH� �

�

regH�regL 	
 regH�regL

Figure ���	� Long Negation

Long shifts by � are normally performed using the carry �ag and rotating that �ag onto the
high or low part of the answer� A left shift is independent of the sign of the long operand�
and generally involves the low part to be shifted left �shl�� the high bit of the low part will
be in the carry �ag� The high part is then shifted left� but making use of the carry �ag�
which contains the bit to be placed on the lowest bit of the high part answer� thus� a rcl
�rotate carry left� instruction is used� This idiom is shown in Figure �����

A long right shift by � needs to retain the sign of the long operand� so two di�erent idioms
are used for signed and unsigned long operands� Figure ��� shows the idiom for signed
long operands� The high part of the long operand is shifted right by �� and an arithmetic
shift right �sar� instruction is used� so that the number is treated as a signed number� The
lower bit of the high part is placed on the carry �ag� The low part of the operand is then
shifted right� taking into account the bit in the carry �ag� so a rotate carry right �rcr�

�� The Front�end

shl regL� �

rcl regH� �

�

regH�regL 	 regH�regL ## �

Figure ����� Shift Long Variable Left by �

instruction is used�

sar regH� �

rcr regL� �

�

regH�regL 	 regH�regL "" � �regH�regL is signed long�

Figure ���� Shift Signed Long Variable Right by �

In a similar way� a long shift right by � of an unsigned long operand is done� In this case�
the high part is shifted right� moving the lower bit into the carry �ag� This bit is then
shifted into the low part by a rotate carry right instruction� See Figure ����

shr regH� �

rcr regL� �

�

regH�regL 	 regH�regL "" � �regH�regL is unsigned long�

Figure ���� Shift Unsigned Long Variable Right by �

Miscellaneous Idioms

A widely known machine idiom is the assignment of zero to a variable� Rather than using
a mov instruction� an xor is used� whenever a variable is xored to itself� the result is zero�
This machine idiom uses fewer machine cycles and bytes than its counterpart� and is shown
in Figure ���

	�� Semantic Analysis ��

xor reg�stackOff� reg�stackOff

�

reg�stackOff 	 �

Figure ��� Assign Zero

Di�erent machine architectures restrict the number of bits that are shifted in the one shift
instruction� In the case of the i	�	�� the shift instruction allows only one bit to be shifted
in the one instruction� thus� several shift instructions have to be coded when shifting two
or more bits� Figure ��� shows this idiom� In general� a shift by constant n can be done
by n di�erent shift � instructions�

shl reg� �

$

����� % n times

shl reg� �

�

�

reg 	 reg ## n

Figure ���� Shift Left by n

Bitwise negation of an integer�word variable is done as shown in Figure ���� This idiom
negates ��s complement� the register� then subtracts it from itself with borrow in case there
was an under�ow in the initial negation of the register� and
nally increments the register
by one to get a � or � answer�

neg reg

sbb reg� reg

inc reg

�

reg 	 �reg

Figure ���� Bitwise Negation

�	 The Front�end

	���� Simple Type Propagation

The sign of elementary data types such as byte and integer is easily determined by the
type of conditional jump used to compare an operand� Such a technique is also used to
determine the sign of more complex elementary data types such as long and real� The
following sections illustrate the techniques used to determine whether a word�sized operand
is a signed or unsigned integer� and whether a two word�sized operand is a signed or unsigned
long� These techniques are easily extended to other elementary data types�

Propagation of Integers

A word�sized operand can be a signed integer or an unsigned integer� Most instructions
that deal with word�sized operands do not make any distinction between signed or unsigned
operands� conditional jump instructions are an exception� There are di�erent types of
conditional jumps for most relational operations� for example� the following code�

cmp �bp
�Ah�� ��h

jg X

checks whether the word operand at bp
�Ah is greater than ��h� The following code�

cmp �bp
�Ah�� ��h

ja X

checks whether the word operand at bp
�Ah is above ��h� This latter conditional jump
tests for unsigned word operands� while the former conditional jump tests for signed word
operands� hence� the local variable at bp
�Ah is a signed integer in the former case� and an
unsigned integer in the latter case� This information is stored as an attribute of the local
variable bp
�Ah in the symbol table�

In the same way� whenever the operands of a conditional jump deal with registers� the
register is determined to be a signed or unsigned integer register� and this information is
propagated backwards on the basic block to which the register belongs� up to the de
nition
of the register� Consider the following code�

� mov ax� �bp
�Ch�

� cmp ax� ��h

� ja X

By instruction � the operands of the conditional jump are determined to be unsigned inte�
gers� hence� register ax and constant ��h are unsigned integer operands� Since register ax
is not a local variable� this information is propagated backwards until the de
nition of ax is
found� In this example� instruction � de
nes ax in terms of local variable bp
�Ch� therefore�
this local variable represents an unsigned integer and this attribute is stored in the symbol
table entry for bp
�Ch�

The set of conditional jumps used to distinguish a signed from an unsigned integer are
shown in Figure ���� These conditional jumps are for the Intel architecture�

	�� Semantic Analysis �

Signed Conditional Unsigned Conditional
jg ja

jge jae

jl jb

jle jbe

Figure ���� Sign Determination According to Conditional Jump

Propagation of Long Variables

The initial recognition of long variables is determined by idiom analysis� as described in
Section ����� Once a pair of identi
ers is known to be a long variable� all references to
these identi
ers must be changed to re�ect them being part of a long variable �i�e� the
high or low part of the long variable�� Also� couples of instructions that deal with the high
and low parts of the long variable can be merged into the one instruction� Consider the
following code�

��� mov dx� �bp
��h�

��� mov ax� �bp
�h�

��� add dx�ax� �bp
�Ah���bp
�Ch�

��� mov �bp
�Eh�� dx

��� mov �bp
��h�� ax

Instructions ��� and ��� were merged into the one add instruction by idiom analysis� leading
to the identi
ers bp
�Ah and bp
�Ch to become a long variable� as well as the registers
dx�ax� Identi
ers other than registers are propagated throughout the whole subroutine
intermediate code� in this example� no other references to bp
�Ah are done� Registers are
propagated within the basic block they were used in� by backward propagation until the
register de
nition is found� and forward propagation until a rede
nition of the register is
done� In this example� by backward propagation of dx�ax� we arrive at the following code�

��� mov dx�ax� �bp
��h���bp
�h�

��� add dx�ax� �bp
�Ah���bp
�Ch�

��� mov �bp
�Eh�� dx

��� mov �bp
��h�� ax

which merges instructions ��	 and ��� into the one mov instruction� Also� this merge has
determined that the local identi
ers bp
��h and bp
�h are a long variable� and hence� this
information is stored in the symbol table� By forward propagation of dx�ax within the basic
block we arrive at the following code�

��� mov dx�ax� �bp
��h���bp
�h�

��� add dx�ax� �bp
�Ah���bp
�Ch�

��� mov �bp
�Eh���bp
��h�� dx�ax

which merges instructions �� and ��� into the one mov instruction� In this case� the local
identi
ers bp
�Eh and bp
��h are determined to be a long variable� and this information is
also stored in the symbol table and propagated�

�� The Front�end

Propagation of long variables across conditional jumps is done in two or more steps� The
high and low part of the long identi
er are compared against another identi
er in di�erent
basic blocks� The notion of basic block is simple� a sequence of instructions that have one
entry and one exit point� this notion is explained in more detail in Section ������ Consider
the following code�

��� mov dx�ax� �bp
�Eh���bp
��h�

��� cmp dx� �bp
�Ah�

��� jl L��

��� jg L��

��� cmp ax� �bp
�Ch�

��� jbe L��

At instruction ���� registers dx�ax are determined to be a long register� hence� the cmp

opcode at instruction ��� is only checking for the high part of this long register� a further
instruction ����� checks for the low part of the long register� By analysing the instructions
it is seen that whenever dx�ax are less or equal to the identi
er �bp
�Ah���bp
�Ch�� the
label L�� is reached� otherwise the label L�� is reached� These three basic blocks can be
transformed into a unique basic block that contains this condition� as follows�

��� mov dx�ax� �bp
�Eh���bp
��h�

��� cmp dx�ax� �bp
�Ah���bp
�Ch�

��� jle L��

This basic block branches to label L�� whenever the condition is true� and branches to label
L�� whenever the condition is false� The presence of label L�� is not made explicit in the
instructions� but is implicit in the out�edges of this basic block�

In general� long conditional branches are identi
ed by their graph structure� Figure ���
shows
ve graphs� Four of these represent six di�erent conditions� Graphs �a� and �b�
represent the same condition� These graphs represent di�erent long conditions depending
on the instructions in the nodes associated with these graphs� the conditions are� ��� ��
�� and ��� Graphs �c� and �d� present equality and inequality of long variables� These
four graphs are translated into graph �e� when the following conditions are satis
ed�

� Graphs �a� and �b��

� Basic block x is a conditional node that compares the high parts of the long
identi
ers�

� Basic block y is a conditional node that has one instruction � a conditional jump�
and has one in�edge� the one from basic block x�

� Basic block z is a conditional node that has two instructions� a compare of the
low parts of the long identi
ers� and a conditional jump�

� Graphs �c� and �d��

� Basic block x is a conditional node that compares the high parts of the long
identi
ers�

	�� Intermediate Code Generation ��

n
n
n
nn�

�
��R

�

�
�

���

x

y

z

te

�

n
n
nn

���

�
�

�
�R

x

y

te
��

�

n
n
n
n

n ��

� n

�e�

n n
n

n
n n

�
��

�

�

�
S

S
Sw

�
��

�

C
C
C
C
CCW

�
�

�R

�
�

���

A
A
AAU

x

y

z

e t

x

y

e t

x

e t

�a� �b� �c� �d�

Figure ���� Long Conditional Graphs

� Basic block y is a conditional node that has two instructions� a compare of the
low parts of the long identi
ers� and a conditional jump� and has one in�edge� the
one from basic block x�

Figure ��� shows sample code for the graphs �c� and �d� of Figure ���� equality and
inequality of long identi
ers� This code is for the Intel i	�	� architecture�

Node x Node y Boolean Condition
cmp dx� o�Hi cmp ax� o�Low � �
jne t jne t
cmp dx� o�Hi cmp ax� o�Low ��
jne e je t

Figure ���� Long Equality Boolean Conditional Code

Sample code for the nodes of graph �a�� Figure ��� is given in Figure ��	� The code as�
sociated with each node represents di�erent non�equality Boolean conditions� namely� less
or equal� less than� greater than� and greater and equal� Similar code is used for the nodes
of graph �b� which represent the same exact Boolean conditions� This code is for the Intel
i	�	� architecture�

��� Intermediate Code Generation

In a decompiler� the front�end translates the machine language source code into an inter�
mediate representation which is suitable for analysis by the universal decompiling machine�
Figure ��� shows the relation of this phase with the semantic analyzer and the last phase
of the front�end� the control �ow graph generator� A target language independent represen�
tation is used� so that retargeting to a di�erent language is feasible� by writing a back�end
for that language and attaching it to the decompiler�

�� The Front�end

Node x Node y Node z Boolean Condition
cmp dx� o�Hi jg e cmp ax� o�Low ��
jl t jbe t
cmp dx� o�Hi jne e cmp ax� o�Low �
jl t jb t
cmp dx� o�Hi jne e cmp ax� o�Low �
jg t ja t
cmp dx� o�Hi jl e cmp ax� o�Low ��
jg t jae t

Figure ��	� Long Non�Equality Boolean Conditional Code

j

Y�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� � � � �

�Z
Z

Z
ZZ� ��

�
�

��

�
� � � � � � �

� � � � � � �

�

�

�

�

�

�

�

�

�

�

�� � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

�

Parser UDM

Symbol

Intermediate
Code
GenerationAnalyzer

Semantic intermediate

code

Control
Flow Graph
Generation

Table

Figure ���� Interaction of the Intermediate Code Generator

A two�step approach is taken for decompilation� a low�level intermediate representation is

rst used to represent the machine language program� Idiom analysis and type propagation
can be done in this representation� as well as generating assembler code from it �i�e� it
is an intermediate code suitable for a disassembler� which does not perform high�level
analysis on the code�� This representation is then converted into a high�level intermediate
representation that is suitable for high�level language generation� The representation needs
to be general enough to generate code for any high�level language�

	���� Low�level Intermediate Code

A low�level intermediate representation that resembles the assembler language for the
machine that is being decompiled is a good choice of low�level intermediate code� as it is
possible to perform semantic analysis on the code� as well as generate assembler programs
from it� The intermediate code must have a one instruction for each complete instruction
of the machine language� Compound machine instructions must also be represented by one
intermediate instruction� For example� in Figure ����� the machine instruction B��� is a
mov bh��� intermediate instruction� The machine instruction �E followed by FFEFC��� �a
jmp with a cs segment override� is replaced by a jmp instruction that makes explicit the use
of register cs� And
nally� the compound machine instructions F�A are equivalent to the
assembler instructions rep and movs di�si� These two instructions are represented by the
unique intermediate instruction rep�movs� which makes explicit the destination and source
registers of the move�

parsa
Highlight

	�� Intermediate Code Generation �

�E F�

B��� FFEFC��� A�

�

mov bh��� jmp cs���C��bx� rep�movs di�si

Figure ����� Low�level Intermediate Instructions � Example

Implementation of Low�Level Intermediate Code

The low�level intermediate representation is implemented in quadruples which make explicit
the operands use in the instruction� as shown in Figure ����� The opcode
eld holds the
low�level intermediate opcode� the dest
eld holds the destination operand �i�e� an iden�
ti
er�� and the src� and src�
elds hold the source operands of the instruction� Some
instructions do not use two source operands� so only the src�
eld is used�

opcode src	dest src�

Figure ����� General Representation of a Quadruple

Example 	 An add bx�� machine instruction is represented in a quadruple in the follow�
ing way�

add �bx bx

where register bx is source and destination operand� and constant � is the second source
operand�

Example
 A push cx machine instruction is represented in the following way�

HHHsppush cx

where register cx is the source operand and register sp is the destination operand�

	���� High�level Intermediate Code

Three�address code is a generalized form of assembler code for a three�address machine�
This intermediate code is most suited for a decompiler� given that the three�address code
is a linearized representation of an abstract syntax tree �AST� of the program� In this way�
the complete AST of the program can be reconstructed during the data �ow analysis� A
three�address instruction has the general form�

x �	 y op z

where x� y� and z are identi
ers� and op is an arithmetic or logic operation� The result
address is x� and the two operand addresses are y and z�

�� The Front�end

Types of Three�Address Statements

Three�address statements are similar to high�level language statements� Given that the data
�ow analysis will reconstruct the AST of the program� a three�address instruction is going
to represent not only individual identi
ers� but expressions� An identi
er can be viewed as
the minimal form of an expression� The di�erent types of instructions are�

�� asgn �exp�� �arithExp�
The asgn instruction assigns an arithmetic expression to an identi
er or an expression
�i�e� an identi
er that is represented by an expression� such as indexing into an array��
This statement represents three di�erent types of high�level assignment instructions�

� x �	 y op z� Where x� y� and z are identi
ers� and op is a binary arithmetic
operator�

� x �	 op y� Where x and y are identi
ers� and op is a unary arithmetic operator�

� x �	 y� Where x and y are identi
ers�

After data �ow analysis� the arithmetic expression represents not only a binary
operation� but holds a complete parse tree of arithmetic operators and identi
ers�
This transformation is described in Chapter ��

In this context� a subroutine that returns a value �i�e� a function�� is also considered
an identi
er� as its invocation returns a result that is assigned to another identi
er
�e�g� a �	 sum�b�c���

� jmp
The unconditional jump instruction has no associated expression attached to it� other
than the target destination address of the jump� This instruction transfers control to
the target address� Since the address is coded in the out�edge of the basic block that
includes this instruction� it is not explicitly described as part of the instruction� This
instruction is equivalent to the high�level instruction�

goto L

where L is the target address of the jump�

�� jcond �boolExp�
The conditional jump instruction has a Boolean expression associated with it� which
determines whether the branch is taken or not� The Boolean expression is of the form
x relop y� where x and y are identi
ers� and relop is a relational operator� such as
������ This statement is equivalent to the high�level statement�

if x relop y goto L

In this intermediate instruction� the target branch address �L� and the fall�through
address �i�e� address of the next instruction� are not part of the instruction as these
are coded in the out�edges from the basic block that has this instruction in the control
�ow graph�

�� call �procId� �actual parameters�
The call instruction represents a subroutine call� The procedure identi
er ��procId��
is a pointer to the �ow graph of the invoked procedure� The actual parameter list is

	�� Intermediate Code Generation ��

constructed during data �ow analysis� If the subroutine called is a function� it also
de
nes the registers that hold the returned value� In this case� the instruction is
equivalent to asgn �regs�� �procId� �actual parameters��

�� ret ��arithExp��
The return instruction determines the end of a procedure along a path� If there is
nothing to return� the subroutine is a procedure� otherwise it is a function�

There are also two pseudo high�level intermediate instructions that are used as intermediate
instructions in the data �ow analysis� but are eliminated by the end of the analysis� These
instructions are�

�� push �arithExp�
The push instruction places the associated arithmetic expression on a temporary stack�

� pop �ident�
The pop instruction takes the expression or identi
er at the top of the temporary stack
and assigns it to the identi
er ident�

Implementation of High�Level Intermediate Code

The high�level intermediate representation is implemented by triplets� In a triplet� the two
expressions are made explicit� as well as the instruction opcode� such as shown in Figure ��
�� The result and arg
elds are pointers to an expression� which in its minimal form is
an identi
er which points to the symbol table�

op argresult

Figure ���� General Representation of a Triplet

An assignment statement x �	 y op z is represented in a triplet in the following way� the
op
eld is the asgn opcode� the result
eld has a pointer to the identi
er x �which in turn
has a pointer to the identi
er in the symbol table�� and the arg
eld has a pointer to a
binary expression� this expression is represented by an abstract syntax tree with pointers
to the symbol table entries of y and z� as follows�

� �

���

op

��R

ASGN Symbol Table

id� xid�

id� z

id	 y

id	 id�

In a similar way� a conditional jump statement if a relop b is represented in a triplet in
the following way� the op
eld is the jcond opcode� the result
eld has a pointer to the
abstract syntax tree of the relational test� and the arg
eld is left empty� as follows�

�� The Front�end

XXXXX
�

���
id	

��R

JCOND Symbol Table

id	 b

id� a
relop

id�

An unconditional jump statement goto L does not use the result or arg
eld� The op

eld is set to jmp� and the other
elds are left empty� as follows�

HHHJMP
HHH

A procedure call statement procX �a�b� uses the op
eld for the call opcode� the result

eld for the procedure�s name� which is pointed to in the symbol table� and the arg
eld
for the procedure arguments� which is a list of arguments that point to the symbol table�
as follows�

� �

� � id� b

CALL

id	 id�

id�

Symbol Table

id� procX

id	 a

A procedure return statement ret a uses the op
eld for the ret opcode� the result
eld
for the identi
er�expression that is being returned� and the arg
eld is left empty� as fol�
lows�

�

HHH
id� a

RET

id�

Symbol Table

The pseudo high�level instruction push a is stored in a triplet by using the op
eld as the
push opcode� the arg
eld as the identi
er that is being pushed� and the result
eld is
left empty� as follows�

�
id�

HHH Symbol Table

id� a

PUSH

In a similar way� the pop a instruction is stored in a triplet� using the op
eld for the pop
opcode� the result
eld for the identi
er� and eventually �during data �ow analysis�� the
arg
eld is
lled with the expression that is being popped� Initially� this
eld is left empty�
The triplet representation is as follows�

	�	 Control Flow Graph Generation ��

�

HHHPOP

id�

Symbol Table

id� a

��� Control Flow Graph Generation

The control �ow graph generation phase constructs a call graph of the source program� and
a control �ow graph of basic blocks for each subroutine of the program� These graphs are
used to analyze the program in the universal decompiling machine �UDM� module� The
interaction of this phase with the intermediate code generator and the udm is shown in
Figure �����

�� � � �

� � � � � � � � �

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�� � � �

iPPPPPPPq

� �
� � � � � � � � �

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�

���������
Symbol

Semantic
Analyzer Back�end

Control FlowIntermediate UDM
Code Generator Graph Generator

Table

Figure ����� Interaction of the Control Flow Graph Generator

	�	�� Basic Concepts

This section describes de
nitions of mathematical and graph theory� These terms are de
ned
here to eliminate any ambiguity of terminology�

De�nition 	 A graph G is a tuple �V�E� h� where V is a set of nodes� E is a set of edges�
and h is the root of the graph� An edge is a pair of nodes �v�w�� with v�w � V �

De�nition
 A directed graph G � �N�E� h� is a graph that has directed edges� i�e�
each �ni� nj� � E has a direction� and is represented by ni � nj �

De�nition � A path from n� to nm in graph G � �N�E� h�� represented n� �� nn� is a
sequence of edges �n�� n��� �n�� n��� � � � � �nn��� nm� � N�m � ��

De�nition � If G � �V�E� h� is a graph� �� h � V � and E � �� then G is called a trivial
graph�

De�nition � If G � �N�E� h� is a graph� and 	n � N�h �� n� then G is a connected
graph�

A connected graph is a graph in which all nodes can be reached from the header node� A
sample directed� connected graph is shown in Figure �����

�	 The Front�end

v1 v2

v4

e3

v3

e1

e2 e6

e8

e5

e7

e4

Figure ����� Sample Directed� Connected Graph

Graph Representation

A graph G � �V�E� h� is represented in several di�erent ways� including� incidence matrices�
adjacency matrices� and predecessor�successor tables�

De�nition The incidence matrix for a graph G � �V�E� h� is the v � e matrix M�G� �
�mij�� where mij is the number of times �
� 	 or �� that vertex vi and edge ej are incident�

De�nition �� The adjacency matrix for a graph G � �V�E� h� is the v � v matrix
A�G� � �aij�� where aij is the number of edges joining vertices vi and vj�

De�nition �� The predecessor�successor table for a graph G � �V�E� h� is the v � table
T �G� � �ti�� ti��� where ti� is the list of predecessor vertices of vertex vi� and ti� is the list of
successor vertices of vertex vi�

Example � The graph in Figure ���� is represented by the following matrices�

� Incidence matrix�

e� e� e� e� e� e� e	 e

v� 	 	 	

v� 	

 	 	 	

v�
 	
 	

 	 �
v�

 	
 	 	 	

� Adjacency matrix�

v� v� v� v�
v�
 	 	 	
v� 	
 	 �
v� 	 	 	 	
v� 	 � 	

� Predecessor successor table�

Predecessor Successor
v� � fv�� v�� v�g
v� fv�� v�g fv�� v�g
v� fv�� v�� v�g fv�� v�g
v� fv�� v�� v�g fv�g

	�	�� Basic Blocks

In this section we formalize the de
nition of basic blocks� In order to characterize it� we
need some more de
nitions of program structure� We start by de
ning the components
of a program� that is� data and instructions� Note that this de
nition does not associate
instructions or data to memory locations�

	�	 Control Flow Graph Generation �

De�nition �� Let

� P be a program

� I � fi�� � � � � ing be the instructions of P

� D � fd�� � � � � dmg be the data of P

Then P � I
S
D

For the purpose of this research� programs are restricted to containing no self�modifying
code� and make no use of data as instructions or vice versa �I�P �

T
D�P � � ��� An

instruction sequence is a set of instructions physically located one after the other in memory�

De�nition �� Let

� P be a program

� I � fi�� � � � � ing be the instructions of P

Then S is an instruction sequence if and only if
S � �ij� ij��� � � � � ij�k� � �
 j � j ! k
 n � ij�� is in a consecutive memory location to
ij�	 �
 j
 k � ��

Intermediate instructions are classi
ed in two sets for the purposes of control �ow graph
generation�

� Transfer Instructions �TI�� the set of instructions that transfer �ow of control to
an address in memory di�erent from the address of the next instruction� These
instructions are�

� Unconditional jumps� the �ow of control is transferred to the target jump address�

� Conditional jumps� the �ow of control is transferred to the target jump address if
the condition is true� otherwise the control is transferred to the next instruction
in the sequence�

� Indexed jumps� the �ow of control is transferred to one of many target addresses�

� Subroutine call� the �ow of control is transferred to the invoked subroutine�

� Subroutine return� the �ow of control is transferred to the subroutine that invoked
the subroutine with the return instruction�

� End of program� the program ends�

� Non transfer instructions �NTI�� the set of instructions that transfer control to the
next instruction in the sequence� i�e� all instructions that do not belong to the TI set�

Having classi
ed the intermediate instructions� a basic block is de
ned in terms of its
instructions�

De�nition �	 A basic block b � �i�� � � � � in��� in�� n � � is an instruction sequence that
satis�es the following conditions�

	� �i�� � � � � in��� � NTI

�� The Front�end

�� in � TI

or

	� �i�� � � � � in��� in� � NTI

�� in�� is the �rst instruction of another basic block�

A basic block is a sequence of instructions that has one entry point and one exit point� If
one instruction of the basic block is executed� all other instructions are executed as well�

The set of instructions of a program can be uniquely partioned into a set of non�overlapping
basic blocks� starting from the program�s entry point�

De�nition �
 Let

� I be the instructions of program P

� h be P�s entry point

Then �B � fb�� � � � � bng � b�
T
b� � � �

T
bn � � � I � b�

S
b�
S
� � �
S
bn � b��s entry point � h�

	�	�� Control Flow Graphs

A control �ow graph is a directed graph that represents the �ow of control of a program�
thus� it only represents the instructions of such a program� The nodes of this graph represent
basic blocks of the program� and the edges represent the �ow of control between nodes� More
formally�

De�nition �� A control �ow graph G � �N�E� h� for a program P is a connected�
directed graph� that satis�es the following conditions�

� 	n � N�n represents a basic blocks of P �

� 	e � �ni� nj� � E� e represents �ow of control from one basic block to another and
ni� nj � N �

� � f � B � N � 	 bi � B� f�bi� � nk for some nk � N � � bj � B � f�bj� � nk

For the purpose of control �ow graph �cfg� generation� basic blocks are classi
ed into
di�erent types� according to the last instruction of the basic block� The available types
of basic blocks are�

� ��way basic block� the last instruction in the basic block is an unconditional jump�
The block has one out�edge�

� �way basic block� the last instruction is a conditional jump� thus� the block has two
out�edges�

� n�way basic block� the last instruction is an indexed jump� The n branches located in
the case table become the n out�edges of this node�

	�	 Control Flow Graph Generation ��

� call basic block� the last instruction is a call to a subroutine� There are two out�edges
from this block� one to the instruction following the subroutine call �if the subroutine
returns�� and the other to the subroutine that is called�

� return basic block� the last instruction is a procedure return or an end of program�
There are no out�edges from this basic block�

� fall basic block� the next instruction is the target address of a branching instruction
�i�e� the next instruction has a label�� This node is seen as a node that falls through
the next one� thus� there is only one out�edge�

The di�erent types of basic block are represented in a control �ow graph by named nodes�
as shown in Figure ����� Whenever a node is not named in a graph� it means that the
type of the basic block is irrelevant� or obvious from the context �i�e� the exact number of
out�edges are speci
ed in the graph��

��
��

��
��

��
��

��
��

��
��

�
�

��
S
Sw

�
��

Z
ZZ���� SSw

�

��
��

�

���

�

�w 	w nw

call ret fall

��way 	�way

fall�throughreturncall

n�way

Figure ����� Node Representation of Di�erent Types of Basic Blocks

Example � Consider the following fragment of code�

� PUSH bp

� MOV bp� sp

� SUB sp�

� MOV ax� �Ah

 MOV �bp
��� ax

� MOV �bp
�� ax

� LEA ax� �bp
�

� PUSH ax

� CALL near ptr proc��

� POP cx

�� L�� MOV ax� �bp
�

�� CMP ax� �bp
��

�� JNE L�

�� PUSH word ptr �bp
�

� MOV ax� �AAh

�� PUSH ax

�� CALL near ptr printf

�� The Front�end

�� POP cx

�� POP cx

�� MOV sp� bp

�� POP bp

�� RET

�� L�� MOV ax� �bp
�

�� CMP ax� �bp
��

� JGE L�

�� LEA ax� �bp
��

�� PUSH ax

�� CALL near ptr proc��

�� POP cx

�� JMP L�

This code has the following basic blocks�

Basic Block Type Instruction Extent
call
 to �
fall �
�w 	
 to 	�
call 	� to 	�
ret 	���	
�w ������
call �����
	w ��� ��

The control �ow graph that represents these instructions is shown in Figure �����

From here onwards� the word graph is used to represent a control �ow graph� and the word
node is used to represent a basic block� unless otherwise stated�

Implementation

Control �ow graphs have on average close out edges per node� thus� a matrix repre�
sentation �e�g� incident and adjacent matrices� is very sparse and memory ine�cient �i�e�
most of the matrix is zero�� It is therefore better to implement control �ow graphs in
predecessor�successor tables� so that only the existing edges in the graph are represented
in this relationship� Note that the successor is all that is needed to represent the complete
graph� the predecessor is also stored to make access to the graph easily during di�erent
traversals of the graph�

If the size of the graph is unknown �i�e� the number of nodes is not
xed�� it is possible to
construct the graph dynamically as a pointer to a basic block� which has a list of predecessor
and a list of successors attached to it� The predecessors and successors are pointers to basic
block nodes as well� in this way� a basic block is only represented once� This representation is
plausible in any high�level language that allows dynamic allocation of memory� Consider the
C de
nition of a basic block in Figure ����� The BB structure de
nes a basic block node�
the numInEdges and numOutEdges hold the number of predecessor and successor nodes�

	�	 Control Flow Graph Generation �

��

����

����

����

���� ����

���� ����

����

��
�

��
��

�

�

�
���

�
�

�R

��

�

ret

�

�

�

�
�

�
�

�
�

�
�

���

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQs

�

call

proc�

printf

fall

	w

call 	w

call

�w

Figure ����� Control Flow Graph for Example ��

respectively� the ��inEdges is a dynamically allocated array of pointers to predecessor
basic blocks� and the ��outEdges is a dynamically allocated array of pointers to successor
basic blocks� In this representation� a graph is a pointer to the header basic block �i�e� a
PBB��

typedef struct �BB�

byte nodeType� �� Type of node ��

int numInEdges� �� Number of in edges ��

struct �BB ��inEdges� �� Array of pointers to predecessors ��

int numOutEdges� �� Number of out
edges ��

struct �BB ��outEdges� �� Array of pointers to successors ��

�� other fields go here ��

 BB�

typedef BB �PBB� �� Pointer to a basic block ��

Figure ����� Basic Block De
nition in C

�� The Front�end

Graph Optimization

One pass compilers generate machine code that makes use of redundant or unnecessary
jumps in the form of jumps to jumps� conditional jumps to jumps� and jumps to condi�
tional jumps� These unnecessary jumps can be eliminated by a peephole optimization on
�ow�of�control� This optimization is not always used� though�

Peephole optimization is a method for improving the performance of the target program by
examining a short sequence of target instructions �called the peephole� and replacing these
instructions by a shorter or faster sequence of instructions� The peephole is a small� moving
window of target code� the code in the peephole does not need to be contiguous� Each im�
provement made through a peephole optimization may spawn opportunities for additional
improvements� thus� repeated passes over the code is necessary�

Flow�of�control optimization is the method by which redundant jumps are eliminated� For
decompilation� we are interested in eliminating all jumps to jumps� and conditional jumps
to jumps� as the target jump holds the address of the target branch� and makes use of an
intermediate basic blocks that can be removed from the graph� The removal of jumps to
conditional jumps is not desired� as it involves the rearrangement of several instructions�
not just the modi
cation of one target branch address�

The following jump sequence jumps to label Lx to jump to label Ly afterwards� without any
other instructions executed between the jumps�

jmp Lx

��� � other code here

Lx� jmp Ly

This sequence is replaced by the sequence

jmp Ly

��� � other code here

Lx� jmp Ly

where the
rst jump branches to the target Ly label� rather than the intermediate Lx label�
The number of predecessors to basic block starting at Lx is decremented by one� and the
number of predecessors to block startin at Ly is incremented by one� to re�ect the change of
edges in the graph� If at any one time the number of predecessors to the basic block starting
at label Lx becomes zero� the node is removed from the graph because it is unreachable�
and thus was unnecessary in the
rst place�

In a similar way� an unconditional jump to a jump sequence like the following

jZ Lx

��� � other code here

Lx� jmp Ly

is replaced by the code sequence

jZ Ly

��� � other code here

Lx� jmp Ly

	�	 Control Flow Graph Generation ��

The Call Graph

The call graph is a mathematical representation of the subroutines of a program� Each
node represents a subroutine� and each edge represents a call to another subroutine� More
formally�

De�nition �� Let P� fp�� p�� � � �g be the �nite set of procedures of a program� A call graph
C is a tuple �N�E� h�� where N is the set of procedures and ni � N represents one and only
one pi � P� E is the set of edges and �ni� nj� � E represents one or more references of pi
to pj� and h is the main procedure�

The construction of the call graph is simple if the invoked subroutines are statically bound
to subroutine constants� that is� the program does not make use of procedure parameters
or procedure variables� The presence of recursion introduces cycles in the call graph� An
e�cient algorithm to construct the call graph in the presence of procedure parameters� for
languages that do not have recursion is given in �Ryd���� This method was later extended to
support recursion� and is explained in �CCHK���� Finally� a method that handles procedure
parameters and a limited type of procedure variables is described in �HK���

It should be noted that this method is not able to reconstruct all graphs to their original
form� as a compiler optimisation could have changed an implicit call instruction into an
unconditional jump� In these cases� the call graph �and hence the decompiler� will treat the
code of both subroutines as being one� unless the invoked subroutine is also called elsewhere
via an implicit call instruction�

Chapter �

Data Flow Analysis

T he low�level intermediate code generated by the front�end is an assembler�type repre�
sentation that makes use of registers and condition codes� This representation can be

transformed into a higher level representation that does not make use of such low�level
concepts� and that regenerates the high�level concept of expression� The transformation
of low�level to high�level intermediate code is done by means of program transformations�
traditionally referred to as optimizations� These transformations are applied to the low�
level intermediate code� to transform it into the high�level intermediate code described in
Chapter �� Section ����� The relation of this phase with the front�end and the control �ow
analysis phase is shown in Figure ����

�
�

� �

yXXXXXXXXXXXXXz

�� � � �

� � � � � � � � �

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�

Low�level
intermediate code

Control Flow
Analysis
Data Flow

Symbol
Table

Back�endFront�end
intermediate code
High�level

Analysis

Figure ���� Context of the Data Flow Analysis Phase

The types of transformations that are required by the data �ow analysis phase include�
the elimination of useless instructions� the elimination of condition codes� the determina�
tion of register arguments and function return register�s�� the elimination of registers and
intermediate instructions by the regeneration of expressions� the determination of actual
paramaters� and the propagation of data type across subroutine calls� Most of these trans�
formations are required to improve the quality of the low�level intermediate code� and to
reconstruct some of the information lost during the compilation process� In the case of the
elimination of useless instructions� this step is required even for optimising compilers when
there exist machine instructions that perform more than one function at a time �for an
example� refer to Section ������

Conventional data �ow analysis is the process of collecting information about the way
variables are used in a program� and summarizing it in the form of sets� This information
is used by the decompiler to transform and improve the quality of the intermediate code�
Several properties are required by code�improving transformations� including�ASU	�b��

�� A transformation must preserve the meaning of programs�

�	 Data Flow Analysis

� A transformation must be worth the e�ort�

Techniques for decompilation optimization of the intermediate code are presented in this
chapter� The transformations are
rstly illustrated by means of examples� and algorithms
are later provided for each optimization�

��� Previous Work

Not much work has been done in the area of data �ow analysis of a decompiler� mainly due to
the limitations placed on many of the decompilers available in the literature� decompilation
of assembler source
les�Hou��� Fri��� Wor�	� Bri	��� decompilation of object
les with
symbolic debugging information�Reu		�� and the compiler speci
cation requirements to
build a decompiler�BB��� Bow��� BB���� Data �ow analysis is essential when decompiling
pure binary
les� as there is no extra information on the way data is used� and the type of
it� The following sections summarize all the work that has been done in this area�

���� Elimination of Condition Codes

A program which translates microprocessor object code �i	�	�� into a behaviorally equiv�
alent PL�� program was described by Marshall and Zobrist�MZBR	��� and was used for
electronic system simulation� The
nal PL�� programs contained a large number of state�
ments that de
ned �ags� even if these �ags were not used or referenced later on the program�
This prompted DeJean and Zobrist to formulate an optimization of �ag de
nitions by means
of a reach algorithm�DZ	��� This method eliminated over �� of the �ag de
nitions in the
translation process� generating PL�� programs that de
ned only the necessary �ags for a
later condition�

The method presented in this thesis goes beyond this optimization of �ag de�nitions� in that
it not only determines which �ag de�nitions are extraneous and therefore unnecessary� but
also determines which Boolean conditional expression is represented by the combined set of
instructions that de�ne and use the �ag� In this way� the target HLL program does not rely
on the use and concept of �ags� as any real HLL program does not�

���� Elimination of Redundant Loads and Stores

A method of text compression was presented by Housel�Hou��� for the elimination of inter�
mediate loads and stores� This method works on a ��address intermediate representation of
the program� and consists of two stages� forward�substitution and backward�substitution�
The former stage substitutes the source operand of an assignment instruction into a subse�
quent instruction that uses the same result operand� if the result is found to be not busy
within the same basic block� The latter stage substitutes the result operand of an assign�
ment instruction into a previous instruction �other than an assignment instruction� that
de
nes as result operand the source operand of the assignment instruction under consid�
eration� This method provided a reduction of instruction of up to �� in assembly code
compiled by Knuth�s MIXAL compiler�

�� Types of Optimizations �

A method of expression condensation was described by Hopwood�Hop�	� to combine or
more intermediate instructions into an equivalent expression by means of forward substitu�
tion� This method speci
es � necessary conditions and � su�cient conditions under which
forward substitution of a variable or register can be performed� This method was based on
variable usage analysis� The great number of conditions is inherent to the choice of control
�ow graph� one node per intermediate instruction� rather than basic blocks� This meant
that variables were forward substituted across node boundaries� making the whole process
much more complex than required�

The interprocedural data �ow analyses presented in this thesis de�ne two su�cient condi�
tions under which a register can be substituted or replaced into another instruction� including
such intermediate instructions as push and pop� This method not only �nds expressions by
eliminating intermediate registers and instruction de�nitions� but also determines actual
parameters of subroutines� values returned from functions� and eliminates pseudo high�level
instructions� The method is based on the initial high�level intermediate representation of
the binary program� which is semantically equivalent to the low�level intermediate represen�
tation� and transforms it into a HLL representation�

��� Types of Optimizations

This section presents the code�improving transformations used by a decompiler� The tech�
niques used to implement these transformations are explained in Sections ��� and ���� The
optimizations presented in this section make use of the example �ow graph in Figure ���
where basic blocks B� � � � B� belong to the main program� and blocks B� � � � B� belong
to the subroutine �aNlshl �a runtime support routine�� In the main program� registers si
and di are used as register variables� and have been �agged by the parser as possibly being
so �see Chapter �� Section ������

The aim of these optimizations is to eliminate the low�level language concepts of condition
codes� registers� and intermediate instructions� and introduce the high�level concept of
expressions of more than two operands� For this purpose� it is noted that push instructions
are used in a variety of ways by today�s compilers� Parameter passing is the most common
use of this instruction� by pushing them before the subroutine call� in the order speci
ed
by the calling convention in use� Register spilling is used whenever the compiler runs out
of registers to compute an expression� push and pop are also used to preserve the contents
of registers across procedure calls� and to copy values into registers�

���� Dead�Register Elimination

An identi
er is dead at a point in a program if its value is not used following the de
nition
of the variable� It is said that the instruction that de
nes a dead identi
er is useless� and
thus can be eliminated or removed from the code� Consider the following code from basic
block B�� Figure ���

� ax 	 tmp � di

� dx 	 tmp � di

� dx 	 �

� dx�ax 	 ax � dx

�� Data Flow Analysis

�
XXXXXXXXXz

�

�					

�

�

					

XXXXXz

B�

B�

B�

aNlshl

� si � 	�
	 di � �
� ax � si
� dx
ax � ax
� tmp � dx
ax
� ax � tmp � di
� dx � tmp � di
 dx � �
� dx
ax � ax � dx

�� si � ax

�
��

�� �bp���
�bp�� � ����

� ret

�� cmp �bp���
�bp��� dx
ax
�� jg B	

�� dx
ax � �bp�	�
�bp���

�	 �bp�	�
�bp��� � 	���

B�

�� dx
ax � �bp���
�bp��
�� dx
ax � dx
ax � �bp�	�
�bp���
� �bp���
�bp�� � dx
ax
�� cx � �
	� dx
ax � �bp���
�bp��
	� call aNlshl

	� push �bp���
�bp��
	� ax � si
	� dx � �
	� dx
ax � ax � dx
	 push ax
	� ax � ��
�� push ax
�� call printf
�	 ret

		 �bp���
�bp�� � dx
ax
	� jmp B�

B	

B�

B�

�� ch � �
�� jcxz B�

�� dx
ax � dx
ax �� �
�� cx � cx � �
�� jncxz B�

Figure ��� Sample Flow Graph

�� si 	 ax

Instruction � de
nes register ax� instruction � de
nes register dx� and instruction 	 rede
nes
register dx� There is no use of register dx between the de
nition at instruction � and
instruction 	� thus� the de
nition of register dx at instruction � is dead� and this instruction
becomes useless since it de
nes only register dx� The previous sequence of instructions is
replaced by the following code�

� ax 	 tmp � di

� dx 	 �

� dx�ax 	 ax � dx

�� si 	 ax

The de
nition of register dx at instruction 	 is used in the multiplication of instruction ��
where the register is rede
ned� as well as register ax� Instruction �� uses register ax� and

�� Types of Optimizations ��

there are no further uses of register dx before rede
nition of this register at instruction ���
thus� this last de
nition of dx is dead and must be eliminated� Since instruction � de
nes
not only dx but also ax� and ax is not dead� the instruction is not useless as it still de
nes
a live register� therefore� the instruction is modi
ed to re�ect the fact that only register ax
is de
ned� as follows�

� ax 	 tmp � di

� dx 	 �

� ax 	 ax � dx

�� si 	 ax

���� Dead�Condition Code Elimination

In a similar way to dead�register elimination� a condition code is dead at a point in a program
if its value is not used before rede
nition� In this case� the de
nition of the condition code
is useless� and is not required� but the instruction that de
nes this condition code is still
useful if the identi
ers that the instruction de
nes are not dead� hence� the instruction itself
is not necessarily eliminated� Consider the following code from basic block B�� Figure ���

� cmp �bp
����bp
��� dx�ax � cc
def 	 ZF� CF� SF

�� jg B� � cc
use 	 SF

Instruction �� de
nes the condition codes zero �ZF�� carry �CF� and sign �SF�� Instruction
�� uses the sign condition code� Neither of the following two basic blocks make use of
the condition codes carry or zero before rede
nition� thus� the de
nition of these condition
codes in instruction �� is useless and can be eliminated� We replace the information of
instruction �� to hold the following information�

� cmp �bp
����bp
��� dx�ax � cc
def 	 SF

���� Condition Code Propagation

Condition codes are �ags used by the machine to signal the occurrence of a condition� In
general� several machine instructions set these �ags� ranging from � to � di�erent �ags being
set by the one instruction� and fewer instructions make use of those �ags� only using � or
 �ags� After dead�condition code elimination� the excess de
nitions of condition codes
are eliminated� thus� all remaining �ags are used by subsequent instructions� Consider the
following code from basic block B�� Figure �� after dead�condition code elimination�

� cmp �bp
����bp
��� dx�ax � cc
def 	 SF

�� jg B� � cc
use 	 SF

Instruction �� de
nes the sign �ag by comparing two operands� and instruction �� uses
this �ag to determine whether the
rst operand of the previous instruction was greater
than the second operand� These two instructions are functionally equivalent to a high�
level conditional jump instruction that checks for an operand being greater than a second
operand� The instructions can be replaced by�

�� jcond ��bp
����bp
�� � dx�ax� B�

eliminating instruction �� and all references to the condition codes�

�� Data Flow Analysis

���	 Register Arguments

Subroutines use register arguments to speed the access to those arguments and remove the
overhead placed by the pushing of arguments on the stack before subroutine invocation�
Register arguments are used by many runtime support routines� and by user routines
compiled with the register calling convention �available in some compilers�� Consider the
following code of basic block B� Figure ���

�� cx 	 � def 	 �cx�

�� dx�ax 	 �bp
����bp
�� � def 	 �dx� ax�

�� call �aNlshl

Instruction �� de
nes register cx� instruction � de
nes registers dx�ax � and instruction
� invokes the subroutine �aNlshl� The
rst basic block of the subroutine �aNlshl� B� in
Figure ��� uses register cx after de
ning the high part of this register �i�e� register ch��
thus� the low part of this register �i�e� register cl� contains whatever value the register had
before the subroutine was invoked� In a similar way� basic block B� uses registers dx�ax
before they are de
ned within the subroutine� thus� the values of these registers before
subroutine invocation are used� These three registers are used before being de
ned in the
subroutine� and are de
ned by the caller� thus� they are register arguments to the �aNlshl
subroutine� The formal argument list of this subroutine is modi
ed to re�ect this fact�

formal�arguments��aNlshl� 	 �arg� 	 dx�ax� arg� 	 cl�

Within the subroutine� these registers are replaced by their formal argument name�

���
 Function Return Register�s�

Subroutines that return a value are called functions� Functions usually return values in
registers� and these registers are then used by the caller subroutine� Consider the following
code from basic blocks B and B�� Figure ���

�� dx�ax 	 �bp
����bp
�� � def 	 �dx� ax� use 	 ��

�� call �aNlshl � def 	 �� use 	 �dx� ax� cl�

�� �bp
����bp
�� 	 dx�ax � def 	 �� use 	 �dx� ax�

Instruction � invokes the subroutine �aNlshl� After subroutine return� instruction
uses registers dx�ax� These registers have been de
ned in the previous basic block at
instruction �� but since there is a subroutine invocation in between these two instructions�
the subroutine needs to be checked for any modi
cation�s� to registers dx�ax� Consider the
code of basic block B�� Figure �� after dead�register elimination�

�� dx�ax 	 dx�ax �� �

�� cx 	 cx
 �

�� jcond �cx �� �� B�

Recall from Section ���� that dx�ax are register arguments� These registers are modi
ed
in instruction �� by a shift left� Actually� they form part of a loop as instruction �� jumps
back to the initial instruction �� if register cx is not equal to zero� After the loop is
nished�
the �ow of control is transfered to basic block B�� which returns from this subroutine� The
reference to registers dx�ax in instruction are the modi
ed versions of these registers� We
can think of subroutine �aNlshl as a function that returns both these registers� so the call
to function �aNlshl in instruction � is replaced by�

�� Types of Optimizations �

�� dx�ax 	 call �aNlshl � def 	 �dx� ax� use 	 �dx� ax� cl�

Instruction uses the two registers de
ned in instruction �� so� by register copy
propagation� we arrive to the following code�

�� �bp
����bp
�� 	 call �aNlshl

The return instruction of the function �aNlshl �instruction �	� is modi
ed to return the
registers dx�ax� leading to the following code�

�� ret dx�ax

���� Register Copy Propagation

An instruction is intermediate if it de
nes a register value that is used by a unique
subsequent instruction� In machine language� intermediate instructions are used to move
the contents of operands into registers� move the operands of an instruction into the registers
that are used by a particular instruction� and to store the computed result in registers to a
local variable� Consider the following code from basic block B� Figure ���

�� dx�ax 	 �bp
����bp
�� � def 	 �dx� ax� use 	 ��

�� dx�ax 	 dx�ax
 �bp
����bp
� � def 	 �dx� ax� use 	 �dx� ax�

�� �bp
����bp
�� 	 dx�ax � def 	 �� use 	 �dx� ax�

Instruction �� de
nes the long register dx�ax by copying the contents of the long local
variable at bp
�� This long register is then used in instruction �� as an operand of a
subtraction� The result is placed in the same long register� which is then copied to the long
local variable at bp
� in instruction �	� As seen� instruction �� de
nes the temporary long
register dx�ax to be used in instruction ��� and this instruction rede
nes the register� and is
then copied to the
nal local variable in instruction �	� These intermediate registers can be
eliminated by replacing them with the local variable that was used to de
ne them� thus� in
instruction ��� registers dx�ax are replaced by the long local variable at bp
� which de
ned
these registers in the previous instruction�

�� dx�ax 	 �bp
����bp
��
 �bp
����bp
�

and instruction �� is removed� In a similar way� the resultant long register dx�ax from
instruction �� is replaced in instruction �	� leading to the following code�

�� �bp
����bp
�� 	 �bp
����bp
��
 �bp
����bp
�

and instruction �� is eliminated� The
nal instruction �	 is a reconstruction of the original
high�level expression�

High�level language expressions are represented by parse trees of one or more operands�
whereas machine language expressions allow only for at most two operands� In most cases�
one of these operands needs to be in a register�s�� and the result is also placed in a register�s��
The
nal result is then copied to the appropriate identi
er �i�e� local variable� argument�
global variable�� Consider the following code from basic block B�� Figure �� after dead�
register elimination�

� Data Flow Analysis

� ax 	 si � def 	 �ax� use 	 ��

 dx�ax 	 ax � def 	 �dx� ax� use 	 �ax�

� tmp 	 dx�ax � def 	 �tmp� use 	 �dx� ax�

� ax 	 tmp � di � def 	 �ax� use 	 �tmp�

� dx 	 � � def 	 �dx� use 	 ��

� ax 	 ax � dx � def 	 �ax� use 	 �ax� dx�

�� si 	 ax � def 	 �� use 	 �ax�

Instruction � de
nes register ax by copying the contents of the integer register variable
si� Register variables are treated as local variables rather than registers in this context�
Instruction � uses register ax to de
ne register dx by sign extension of register ax�
Instruction � then uses these sign�extended registers to copy them to register tmp� which
is used in instruction � as the dividend of a divide instruction� The local integer register
variable di is used as the divisor� and the result is placed on register ax� This result is
used in the multiplication in instruction �� which also uses register dx and rede
nes register
ax� Finally� the result is placed on the local register variable si� As seen� most of these
instructions can be folded into a subsequent instruction� eliminatingmost of them as follows�
instruction � is replaced into instruction �� leading to�

 dx�ax 	 si

and instruction � is eliminated� Instruction � is replaced into instruction �� leading to�

� tmp 	 si

and instruction � is eliminated� Instruction � is replaced into instruction �� leading to�

� ax 	 si � di

and instruction � is eliminated� Instruction � is replaced into instruction �� leading to�

� ax 	 �si � di� � dx

and instruction � is eliminated� Instruction � is replaced into instruction �� leading to�

� ax 	 �si � di� � �

and instruction � is eliminated� Finally� instruction � is replaced into instruction ��� leading
to the following
nal code�

�� si 	 �si � di� � �

This
nal instruction �� replaces all previous instructions � � � � ���

���� Actual Parameters

Actual parameters to a subroutine call are either pushed on the stack or placed on registers
�for register arguments� before the subroutine is invoked� These arguments can be mapped
against the formal argument list of the subroutine� and placed in the actual parameter list
of the call instruction� Consider the following code from basic block B�� Figure �� after
register copy propagation�

� push �bp
����bp
��

�� push �si � ��

�� push ��

�� call printf

�� Types of Optimizations �

After parsing� the formal argument list of printf has one
xed argument of size bytes� and
a variable number of other arguments� The calling convention used for this procedure has
been set to C� Instruction �� has also saved the information regarding the number of bytes
popped from the stack after subroutine call� 	 bytes in this case� thus� there are 	 bytes
of actual arguments for this subroutine� the
rst bytes are
xed� Instruction � pushes
� bytes on the stack� instruction 	 pushes bytes on the stack� and instruction �� pushes
another bytes on the stack� for a total of 	 bytes required by printf in this instance�
These identi
ers can be replaced on the actual argument list of printf at instruction ���
in reverse order due to the C calling convention �i�e� last instruction pushed is the
rst one
in the argument list�� The modi
cations lead to the following code�

�� call printf ���� si � �� �bp
����bp
���

and instructions �� 	 and �� are eliminated�

In a similar way� register arguments are placed on the actual argument list of the invoked
subroutine� Consider the following code of basic blocks B and B�� Figure �� after register
argument and function return register detection and dead�register elimination�

�� cl 	 � def 	 �cl�

�� dx�ax 	 �bp
����bp
�� � def 	 �dx� ax�

�� �bp
����bp
�� 	 call �aNlshl � use 	 �dx� ax� cl�

Instruction �� and � de
ne the register arguments used by function �aNlshl� the associated
register de
nitions are placed in the function�s actual argument list in the following way�

�� �bp
����bp
�� 	 call �aNlshl ��bp
����bp
��� �

eliminating instructions �� and �� and intermediate registers dx� ax� and cl�

���� Data Type Propagation Across Procedure Calls

The type of the actual arguments of a subroutine needs to be the same as the type of the
formal arguments� In the case of library subroutines� the formal argument types are known
with certainty� and thus� these types need to be matched against the actual types� If there
are any di�erences� the formal type is to be propagated to the actual argument� Consider
the following code from basic block B�� Figure �� after register copy propagation and the
detection of actual parameters�

�� call printf ���� si � �� �bp
����bp
���

The
rst formal argument type of printf is a string �i�e� a char � in C�� Strings are
stored in machine language as data constants in the data or code segment� These strings
are referenced by accessing the desired segment and an o�set within that segment� In our
example� �� is a constant� and since it is the
rst argument to printf it is really an o�set to
a string located in the data segment� The string type is propagated to this
rst argument�
the string is found in memory� and replaced in the actual argument list� leading to the
following code�

�� call printf ��c � � 	 �d� a 	 �ld n�� si � �� �bp
����bp
���

All other arguments to printf have undetermined type from the point of view of the formal
argument list� so the types that the actual arguments have are trusted �i�e� the types used
in the caller� and are not modi
ed�

� Data Flow Analysis

��� Register Variable Elimination

The register copy propagation optimization
nds high�level expressions and eliminates
intermediate instructions by eliminating most of the intermediate registers used in the
computation of the expression� as seen in Section ����� After this optimization has been
applied� there are only a few registers left �if any� in the intermediate code� These remaining
registers represent register variables or common subexpressions� used by the compiler or
the optimizer to speed up access time� These registers are equivalent to local variables in a
high�level program� and are therefore replaced by new local variables in the corresponding
subroutine that uses them� Consider the following code from basic block B�� Figure ��
after register copy propagation�

� si 	 ��

� di 	 ��

�� si 	 si � di � �

Registers si and di are used as register variables in this procedure� These registers are
initialized in instructions � and � and are later used in the expression of instruction ���
Let us rename register si by loc� and register di by loc�� then the previous code would
look like�

� loc� 	 ��

� loc� 	 ��

�� loc� 	 loc� � loc� � �

and all references to registers have been eliminated�

After applying all of the previously explained transformations� the
nal intermediate code
for Figure �� is shown in Figure ����

��� Global Data Flow Analysis

In order to perform code�improving transformations on the intermediate code� the decom�
piler needs to collect information on registers and condition codes about the whole program�
and propagate this information across the di�erent basic blocks� The information is collected
by a data �ow analysis process� which solves systems of equations that relate information
at various points in the program� This section de
nes data �ow problems and equations
available in the literature� refer to �All�� AC��� ASU	�b� FJ		b� for more information�

���� Data Flow Analysis De�nitions

De�nition �� A register is de�ned if the content of the register is modi�ed �i�e� it is
assigned a new value�� In a similar way� a �ag is de�ned if it is modi�ed by an instruction�

De�nition � A register is used if the register is referenced �i�e� the value of the register
is used�� In a similar way� a �ag is used if it is referenced by an instruction�

De�nition �� A locally available de�nition d in a basic block Bi is the last de�nition
of d in Bi�

�� Global Data Flow Analysis �

�

�

�

									

XXXXXXXz

							

XXXXXXz

�

�bp���
�bp�� � ����

�bp���
�bp� � aNlshl ��bp���
�bp��� ��

arg� � arg� �� �
arg	 � arg	 � � �

��

jcond �arg	 �� �� B�ret

arg	 � arg	 � �x��FF
jcond �arg	 � �� B�

loc� � 	�
loc	 � �
loc� � �loc� � loc	� � �

B�

B	

B�

B�

B�

B�

ret arg	

�bp�	�
�bp��� � 	���
jcond ��bp���
�bp�� � �bp�	�
�bp���� B	

�bp���
�bp�� � �bp���
�bp�� � �bp�	�
�bp���

printf ��c � � � �d� a � �ld n��
loc� � �� �bp���
�bp���

Figure ���� Flow graph After Code Optimization

De�nition �� A locally upwards exposed use u in a basic block Bi is a use which has
not been previously de�ned in Bi�

De�nition �� A de�nition d in basic block Bi reaches basic block Bj if �

	� d is a locally available de�nition from Bi�

�� �Bi � Bj �

�� �Bi � Bj � 	Bk � �Bi � Bj�� k � i � k � j�Bk does not rede�ne d�

De�nition �� Any de�nition of a register��ag in a basic block Bi is said to kill all
de�nitions of the same register��ag that reach Bi�

De�nition �	 A de�nition d in a basic block Bi is preserved if d is not rede�ned in Bi�

De�nition �
 The de�nitions available at the exit of a basic block Bi are either�

	� The locally available de�nitions of the register��ag�

�� The de�nitions of the register��ag reaching Bi�

De�nition �� A use u of a register��ag is upwards exposed in a basic block Bi if either�

	� u is locally upwards exposed from Bi�

�� �Bi � Bk � u is locally upwards exposed from Bk � �Bj � i
 j � k� which contains a
de�nition of u�

�The symbol � is used in this Chapter to represent a path	 This symbol is de�ned in Chapter
�
Section
	�		

	 Data Flow Analysis

De�nition �� A de�nition d is live or active at basic block Bi if�

	� d reaches Bi

�� There is an upwards exposed use of d at Bi�

De�nition �� A de�nition d in basic block Bi is busy �sometimes called very busy� if d
is used before being rede�ned along all paths from Bi�

De�nition � A de�nition d in basic block Bi is dead if d is not used before being rede�ned
along all paths from Bi �i�e� d is not busy or live��

De�nition �� A de�nition�use chain �du�chain� for a de�nition d at instruction i is
the set of instructions j where d could be used before being rede�ned �i�e� the instructions
which can be a�ected by d��

De�nition �� A use�de�nition chain �ud�chain� for a use u at instruction j is the set
of instructions i where u was de�ned �i�e� the statements which can a�ect u��

De�nition �� A path is d�clear if there is no de�nition of d along that path�

���� Taxonomy of Data Flow Problems

Data �ow problems are solved by a series of equations that uses information collected in
each basic block� and propagates it across the complete control �ow graph� Information
propagated within the �ow graph of a procedure is called intraprocedural data �ow anal�
ysis� and information propagated across procedure calls is called interprocedural data
�ow analysis�

Information on registers de
ned or killed is collected from within the basic block in the form
of sets �e�g� gen�� and kill���� and is then summarized at basic block entrance and exit in
the form of sets �e�g� in�� and out�� sets�� A typical data �ow equation for basic block Bi

has the following form�

out�Bi� � gen�Bi� � �in�Bi�� kill�Bi��

and stands for �the information at the end of basic block Bi is either the information
generated on Bi� or the information that entered the basic block and was not killed within
the basic block�� The summary in�� information is collected from the predecessor nodes of
the graph� by an equation of the form�

in�Bi� � �p�Pred�Bi�out�p�

which collects information that is available at the exit of any predecessor node� This data
�ow problem is classi
ed as an any�path problem� since the information collected from pre�
decessors is derived from any path �i�e� not all paths need to have the same information��
Any�path problems are represented in equations by a union of predecessors or successors�
depending on the problem�

In a similar way� an all�paths problem is a data �ow problem that is speci
ed by an equation
that collects information available in all paths from the current basic block to the successors
or predecessors� depending on the type of problem�

�� Global Data Flow Analysis

De�nition �� A data �ow problem is said to be forward��ow if

	� The out�� set is computed in terms of the in�� set within the same basic block�

�� The in�� set is computed from the out�� set of predecessor basic blocks�

De�nition �	 A data �ow problem is said to be backward��ow if

	� The in�� set is computed in terms of the out�� set within the same basic block�

�� The out�� set is computed from the in�� set of successor basic blocks�

This classi
cation of data �ow problems derives the taxonomy shown in Figure ���� For
each forward� and backward��ow problem� all�path and any�path equations are de
ned in
terms of successors and predecessors� This table is taken from �FJ		b��

Forward�Flow Backward�Flow

Any Out�Bi� � Gen�Bi� � �In�Bi� � Kill�Bi�� In�Bi� � Gen�Bi� � �Out�Bi� � Kill�Bi��
path In�Bi� � �

p�Pred�Bi�
Out�p� Out�Bi� � �

s�Succ�Bi�
In�s�

All Out�Bi� � Gen�Bi� � �In�Bi� � Kill�Bi�� In�Bi� � Gen�Bi� � �Out�Bi� � Kill�Bi��
paths In�Bi� � �

p�Pred�Bi�
Out�p� Out�Bi� � �

s�Succ�Bi�
In�s�

Figure ���� Data Flow Analysis Equations

Data Flow Equations

Data �ow equations do not� in general� have unique solutions� but in data �ow problems
either the minimum or maximum
xed�point solution that satis
es the equations is the one
of interest� Finding this solution is done by setting a boundary condition on the initial
value of the in�B� set of the header basic block for forward��ow problems� and the value
of the out�B� set of the exit basic block for backward��ow problems� Depending on the
interpretation of the problem� these boundary condition sets are initialized to the empty or
the universal set �i�e� all possible values��

Intraprocedural data �ow problems solve equations for a subroutine without taking into
account the values used or de
ned by other subroutines� As these problems are �ow in�
sensitive� the boundary conditions are set for all initial �for forward��ow problems� or all
exit �for backward��ow problems� nodes� Interprocedural data �ow problems solve equa�
tions for the subroutines of a program taking into account values use or de
ned by invoked
subroutines� Information �ows between subroutines of the call graph� These �ow sensi�
tive problems set the boundary condition only for the main subroutine of the program�s
call graph� all other subroutines summarize information from all predecessor �in the case of
forward��ow problems� or all successor �for backward��ow problems� nodes in the call graph
�i�e� the caller node�� This section presents data �ow equations used to solve reaching� live�
available� and busy registers�

The reaching register de
nition analysis determines which registers reach a particular basic
block along some path� thus� the following forward��ow� any�path equations are used�

� Data Flow Analysis

De�nition �
 Let

� Bi be a basic block

� ReachIn�Bi� be the set of registers that reach the entrance to Bi

� ReachOut�Bi� be the set of registers that reach the exit from Bi

� Kill�Bi� be the set of registers killed in Bi

� Def�Bi� be the set of registers de�ned in Bi

Then

ReachIn�Bi� �

� S
p�Pred�Bi�ReachOut�p� if Bi is not the header node

� otherwise

ReachOut�Bi� � Def�Bi� � �ReachIn�Bi��Kill�Bi��

Live register analysis determines whether a register is to be used along some path� thus�
the following backward��ow� any�path equations are used�

De�nition �� Let

� Bi be a basic block

� LiveIn�Bi� be the set of registers that are live on entrance to Bi

� LiveOut�Bi� be the set of registers that are live on exit from Bi

� Use�Bi� be the set of registers used in Bi

� Def�Bi� be the set of registers de�ned in Bi

Then

LiveOut�Bi� �

� S
s�Succ�Bi� LiveIn�s� if Bi is not a return node

� otherwise

LiveIn�Bi� � Use�Bi� � �LiveOut�Bi��Def�Bi��

Available register analysis determines which registers are available along all paths of the
graph� thus� the following forward��ow� all�paths equations are used�

De�nition �� Let

� Bi be a basic block

� AvailIn�Bi� be the set of the registers that are available on entrance to Bi

� AvailOut�Bi� be the set of the registers that are available on exit from Bi

� Compute�Bi� be the set of the registers in Bi computed and not killed

� Kill�Bi� be the set of the registers in Bi that are killed due to an assignment

�� Global Data Flow Analysis �

Then

AvailIn�Bi� �

� T
p�Pred�Bi�AvailOut�p� if Bi is not the header node

� otherwise

AvailOut�Bi� � Compute�Bi� � �AvailIn�Bi��Kill�Bi��

Busy register analysis determines which registers are busy along all paths of the graph�
thus� the following backward��ow� all�paths equations are used�

De�nition �� Let

� Bi be a basic block

� BusyIn�Bi� be the set of the registers that are busy on entrance to Bi

� BusyOut�Bi� be the set of the registers that are busy on exit from Bi

� Use�Bi� be the set of the registers that are used before killed in Bi

� Kill�Bi� be the set of the registers that are killed before used in Bi

Then

BusyOut�Bi� �

� T
s�Succ�Bi�BusyIn�s� if Bi is not a return node

� otherwise

BusyIn�Bi� � Use�Bi� � �BusyOut�Bi��Kill�Bi��

The problem of
nding the uses of a register de
nition� i�e� a du�chain problem� is solved
by a backward��ow� any�path problem� Similarly� the problem of
nding all de
nitions for
a use of a register� i�e� a ud�chain problem� is solved by a forward��ow� any�path problem�
The previous data �ow problems are summarized in the table in Figure ����

Forward�Flow Backward�Flow
Any�path Reach Live

ud�chains du�chains
All�path Available Busy

Copy propagation Dead

Figure ���� Data Flow Problems � Summary

Recently� precise interprocedural live variable equations were presented as part of a code
optimization at link�time system �SW���� A two�phase approach is used in order to remove
information propagation across unrelated subroutines that call the same other subroutine�
The call graph has two nodes for each call node� the call node as such� which has an out�edge
to the header node of the callee subroutine� and the ret call node� which has an in�edge from
the return node of the callee subroutine� In the
rst phase� information �ows across normal
nodes and call edges only� return edges are removed from the call graph� In the second
phase� information �ows across normal nodes and return edges only� call edges are removed

� Data Flow Analysis

from the call graph� This phase makes use of the summary information calculated in the

rst phase� Because the information �ows from the caller to the callee� and viceversa� this
method provides a more precise information than other methods presented in the literature�

De
nition �� presents the equations used for precise interprocedural register analysis�
Live and dead register equations are solved for the
rst phase� and summarized for each
subroutine of the call graph in the PUse�� and PDef�� sets� Since live register equations
are also solved in the second phase� these equations have been associated with the phase
number to di�erentiate them �e�g� LiveIn��� for the
rst phase� and LiveIn�� for the second
phase�� Separate equations are given for call� and ret call basic blocks� The initial boundary
conditions for both live and dead equations is the empty set�

De�nition � Let

� Bi be a basic block other than call and ret call

� LiveIn	�Bj� be the set of registers that are live on entrace to Bj during phase one

� LiveOut	�Bj� be the set of registers that are live on exit from Bj during phase one

� DeadIn�Bj� be the set of registers that have been killed on entrance to Bj

� DeadOut�Bj� be the set of registers that have been killed on exit from Bj

� Use�Bj� be the set of registers used in Bj

� Def�Bj� be the set of registers de�ned in Bj

� LiveIn��Bj� be the set of registers that are live on entrace to Bj during phase two

� LiveOut��Bj� be the set of registers that are live on exit from Bj during phase two

Then precise interprocedural live register analysis is calculated as follows�

� Phase 	�

LiveOut	�Bi� �

� S
s�Succ�Bi� LiveIn	�s� if Bi is not a return node
� otherwise

LiveIn	�Bi� � Use�Bi� � �LiveOut	�Bi��Def�Bi��

DeadOut�Bi� �

� T
s�Succ�Bi�DeadIn�s� if Bi is not a return node
� otherwise

DeadIn�Bi� � Def�Bi� � �DeadOut�Bi�� Use�Bi��

LiveOut	�ret call� � �s�Succ�ret call�LiveIn	�s�

LiveIn	�ret call� � LiveOut	�ret call�

LiveOut	�call� � LiveIn	�entry� � �LiveOut	�ret call� �DeadIn�entry��

LiveIn	�call� � LiveOut	�call�

DeadOut�ret call� � �s�Succ�ret call�DeadIn�s�

DeadIn�ret call� � DeadOut�ret call�

DeadOut�call� � DeadIn�entry� � �DeadOut�ret call� � LiveIn	�entry��

DeadIn�call� � DeadOut�call�

�� Global Data Flow Analysis

� Subroutine summary� 	p subroutine�

PUse�p� � LiveIn	�entry�

PDef�p� � DeadIn	�entry�

� Phase ��

LiveOut��Bi� �

� S
s�Succ�Bi� LiveIn��s� if Bi is not the return node of main
� otherwise

LiveIn��Bi� � Use�Bi� � �LiveOut��Bi��Def�Bi��

LiveOut��ret call� � �s�Succ�ret call�LiveIn��s�

LiveIn��ret call� � LiveOut��ret call�

LiveOut��call� � PUse�p� � �LiveOut��ret call� � PDef�p��

LiveIn��call� � LiveOut��call�

ret

ret

def dx
def bx

ret

def ax

1

2

4

5

7

9 10

11

12

13

14

15

8

main
P1

6

3

call

call

def dx

P2

use ax

call

def ax

use cx

def cx

16

use dx

use ax
use bx

ret_call

ret_call

ret_call

Figure ���� Live Register Example Graph

Example � Consider the call graph of Figure ���� This program has a main procedure and
two subroutines� Interprocedural live register analysis� as explained in De�nition �� provides
the following summary information for its nodes�

��� Data Flow Analysis

� Phase 	�

Subroutine Node Def Use LiveIn	 LiveOut	 DeadIn DeadOut
P	 	� � � � � � �

		 � fcxg fcxg � � �
	
 fax�cxg � � fcxg fax�cxg �
� faxg � � � faxg �
� � fdxg fdxg � faxg faxg

P� 	� � faxg faxg � � �
	� � � faxg faxg � �
	� � � fdxg fdxg faxg faxg
	� fdxg � � fdxg fax�dxg faxg

main � � � � � �
� � � � � � �
� � � � � fax�dxg fax�dxg
� � fax�bxg fax�bxg � fdxg fax�dxg
� � � fax�bxg fax�bxg fdxg fdxg
� � � fbx�dxg fbx�dxg faxg faxg
	 fbx�dxg � � fbx�dxg fax�bx�dxg faxg

� Subroutine summary�

Subroutine PUse PDef
P	 fdxg faxg
P� � fax�dxg
main � fax�bx�dxg

� Phase ��

Subroutine Node Def Use LiveIn� LiveOut�
P	 	� � � fax�bxg fax�bxg

		 � fcxg fax�bx�cxg fax�bxg
	
 fax�cxg � fbxg fax�bx�cxg
� faxg � fbxg fax�bxg
� � fdxg fbx�dxg fbxg

P� 	� � faxg faxg �
	� � � faxg faxg
	� � � fdxg fdxg
	� fdxg � � fdxg

main � � � �
� � � � �
� � � � �
� � fax�bxg fax�bxg �
� � � fax�bxg fax�bxg
� � � fbx�dxg fbx�dxg
	 fbx�dxg � � fbx�dxg

�� Global Data Flow Analysis ���

Other types of data �ow equations are also used to solve data �ow problems� Consider
the problem of
nding all reaching register de
nitions to a basic block Bi according to
De
nition � In this de
nition� the reaching problem is de
ned in terms of the available
problem� a register reaches a basic block if that register is available along some path from
a predecessor node to the current node� This problem is equivalent to
nding the set
ReachIn��� The following equation is used to solve this problem�

De�nition 	� Let

	� Bi be a basic block

�� Reach�Bi� be the set of reaching registers to Bi

�� Avail�Bi� be the set of available registers from Bi

Then
Reach�Bi� �

�
p�Pred�Bi�

Avail�p�

The problem of
nding available registers out of a basic block is de
ned in terms of locally
available and reaching de
nitions �see De
nition ��� This problem is equivalent to
nding
the set AvailOut��� The following equation is used�

De�nition 	� Let

	� Bi be a basic block

�� Avail�Bi� be the set of available registers from Bi

�� Reach�Bi� be the set of reaching registers to Bi

�� Propagate�Bi� be the set of the registers that are propagated across Bi

�� Def�Bi� be the set of locally available de�nitions in Bi

Then
Avail�Bi� � Def�Bi� � �Reach�Bi� � Propagate�Bi��

Finally� De
nition � de
nes the live register problem in terms of reaching de
nitions and
upwards exposed uses� This problem is equivalent to solving the equation to the LiveIn��
set� The following equation is used�

De�nition 	� Let

	� Bi be a basic block

�� Live�Bi� be the set of live registers on entrance to Bi

�� Reach�Bi� be the set of reaching registers to Bi

�� UpwardExp�Bi� be the set of the registers that are upwards exposed in Bi

Then
Live�Bi� � Reach�Bi� � UpwardExp�Bi�

��� Data Flow Analysis

���� Solving Data Flow Equations

Given the control �ow graph of a subroutine� data �ow equations can be solved by two
di�erent methods� the iterative method� where a solution is recomputed until a
xed�point is
met� and the interval method� where a solution is found for an interval and then propagated
across the nodes in that interval� These equations do not have a unique solution� but the
minimal solution is taken as the answer� Iterative algorithms are explained in �ASU	�b��
and interval algorithms are given in �All�� AC����

��� Code�improving Optimizations

This section describes how data �ow information is used to solve code�improving optimiza�
tions for a decompiler� The aim of these optimizations is to eliminate all references to
condition codes and registers as they do not exist in high�level languages� and to regen�
erate the high�level expressions available in the decompiled program� This section makes
references to the initial Figure ��� which is replicated here for convenience as Figure ����

�	�� Dead�Register Elimination

A register is dead if it is de
ned by an instruction and it is not used before being rede
ned
by a subsequent instruction� If the instruction that de
nes a dead register de
nes only this
one register� it is said that the instruction is useless� and thus� is eliminated� On the other
hand� if the instruction also de
nes other register�s�� the instruction is still useful but should
not de
ne the dead register any more� In this case� the instruction is modi
ed to re�ect
this fact� Dead register analysis is solved with the use of de
nition�use chains on registers�
as the de
nition�use chain states which instructions use the de
ned register� if there are no
instructions that use this register� the register is dead� Consider the following code from
basic block B�� Figure ��� with de
nition�use �du� chains for all registers de
ned� Note
that register variables do not have a du�chain as they represent local variables rather than
temporary registers�

� ax 	 tmp � di � du�ax� 	 ���

� dx 	 tmp � di � du�dx� 	 ��

� dx 	 � � du�dx� 	 ���

� dx�ax 	 ax � dx � du�ax� 	 ���� du�dx� 	 ��

�� si 	 ax

From inspection� register dx at instruction � and � is de
ned but not subsequently used
before rede
nition� so it is dead in both instructions� Instruction � de
nes only this register�
thus� it is redundant and can be eliminated� Instruction � also de
nes register ax� so the
instruction is modi
ed to re�ect the fact that dx is not de
ned by the instruction any more�
The resulting code looks like this�

� ax 	 tmp � di � du�ax� 	 ���

� dx 	 � � du�dx� 	 ���

� ax 	 ax � dx � du�ax� 	 ����

�� si 	 ax

�	 Code�improving Optimizations ���

�
XXXXXXXXXz

�

�					

�

�

					

XXXXXz

B�

B�

B�

aNlshl

� si � 	�
	 di � �
� ax � si
� dx
ax � ax
� tmp � dx
ax
� ax � tmp � di
� dx � tmp � di
 dx � �
� dx
ax � ax � dx

�� si � ax

�
��

�� �bp���
�bp�� � ����

� ret

�� cmp �bp���
�bp��� dx
ax
�� jg B	

�� dx
ax � �bp�	�
�bp���

�	 �bp�	�
�bp��� � 	���

B�

�� dx
ax � �bp���
�bp��
�� dx
ax � dx
ax � �bp�	�
�bp���
� �bp���
�bp�� � dx
ax
�� cx � �
	� dx
ax � �bp���
�bp��
	� call aNlshl

	� push �bp���
�bp��
	� ax � si
	� dx � �
	� dx
ax � ax � dx
	 push ax
	� ax � ��
�� push ax
�� call printf
�	 ret

		 �bp���
�bp�� � dx
ax
	� jmp B�

B	

B�

B�

�� ch � �
�� jcxz B�

�� dx
ax � dx
ax �� �
�� cx � cx � �
�� jncxz B�

Figure ���� Flow Graph Before Optimization

The algorithm in Figure ��	
nds all registers that are dead and removes them from the
code�

For the purposes of decompilation optimization� du�chains are to be used again later on�
so the du�chains needs to be updated to re�ect the elimination of some instructions� if an
instruction i is to be eliminated due to a dead register de
nition r de
ned in terms of other
registers �i�e� r � f�r�� � � � � rn�� n � ��� the uses of these registers at instruction i no longer
exist� and thus� the corresponding du�chains of the instructions that de
ne the registers
used at i are to be modi
ed so that they no longer have a reference to i� This problem
is solved by checking the use�de
nition chain of i� which states which instructions j de
ne
registers used in i� Consider again the piece of code from basic block B� with du and ud
�use�de
nition� chains on registers�

��	 Data Flow Analysis

procedure DeadRegElim

�� Pre� du
chains on registers have been computed for all instructions�

� Post� dead registers and instructions are eliminated ��

for �each basic block b� do

for �each instruction i in b� do

for �each register r defined in i� do

if �du�r� 	 � � then

if �i defines only register r� then

eliminate instruction i

else

modify instruction i not to define register r

def�i� 	 def�i�
 �r

end if

end if

end for

end for

end for

end procedure

Figure ��	� Dead Register Elimination Algorithm

� tmp 	 dx�ax � du�tmp� 	 ����� � ud�dx� 	 �� ud�ax� 	 ��

� ax 	 tmp � di � du�ax� 	 ��� � ud�tmp� 	 ���

� dx 	 tmp � di � du�dx� 	 �� � ud�tmp� 	 ���

� dx 	 � � du�dx� 	 ���

� dx�ax 	 ax � dx � du�ax� 	 ���� du�dx�	�� � ud�ax� 	 ��� ud�dx� 	 ���

�� si 	 ax � � ud�ax� 	 ���

When instruction � is detected to be redundant� its ud�chain is checked for any instruction�s�
that de
ned the register�s� involved in the computation of the dead register dx� As seen�
register tmp is used at instruction � and was de
ned in instruction � �ud�tmp� � f�g��
which has a du�chain of instructions � and �� Since instruction � is going to be eliminated�
the du�chain of instruction � must be updated to reach only instruction �� leading to the
following code after dead register elimination and du�chain update�

� tmp 	 dx�ax � du�tmp� 	 ��� � ud�dx� 	 �� ud�ax� 	 ��

� ax 	 tmp � di � du�ax� 	 ��� � ud�tmp� 	 ���

� dx 	 � � du�dx� 	 ���

� ax 	 ax � dx � du�ax� 	 ���� � ud�ax� 	 ��� ud�dx� 	 ���

�� si 	 ax � � ud�ax� 	 ���

The algorithm in Figure ��� solves the problem of updating du�chains while doing dead�
register elimination� This algorithm should be invoked by the deadRegElim procedure once

�	 Code�improving Optimizations ��

an instruction is detected to be redundant� and before it is removed� Note that the du�
chain for a particular register might become empty� leading to further dead registers that
are recursively eliminated from the code�

procedure UpdateDuChain �i� instructionNumber�

�� Pre� ud and du
chains on registers have been computed for all instructions�

� instruction i is to be eliminated�

� Post� no du
chain references instruction i any more ��

for �each register r used in instruction i� do

for �each instruction j in ud�r�� do

if �i in du�r� at instruction j� then

du�r� 	 du�r�
 �i

if �du�r� 	 � � then

if �j defines only register r� then

updateDuChain �j�

eliminate instruction j

else

modify instruction j not to define register r

def�j� 	 def�j�
 �r

end if

end if

end if

end for

end for

end procedure

Figure ���� Update of du�chains

�	�� Dead�Condition Code Elimination

A condition code �or �ag� is dead if it is de
ned by an instruction and is not used before
rede
nition� Since the de
nition of a condition code is a side e�ect of an instruction �i�e�
the instruction has another function�� eliminating dead��ags does not make an instruction
redundant� therefore� instructions are not eliminated by dead��ag elimination� In this
analysis� once a condition code has been determined to be dead� it is no longer necessary
for it to be de
ned by an instruction� so this information is removed from the instruction�
Information on condition codes is kept in an instruction in the form of sets� a set of de
ned
conditions and a set of used conditions �i�e� bitsets�� The analysis used to
nd which
condition codes are dead is similar to dead�register analysis in that du�chains are used� In
this case there is no need of ud�chains� since no instruction is eliminated� Consider the
following code from basic block B�� Figure ���� with du�chains on condition codes�

� cmp �bp
����bp
��� dx�ax � def	�ZF�CF�SF� � du�SF�	���� du�CF�ZF�	��

�� jg B� � use	�SF�

��� Data Flow Analysis

Instruction �� de
nes condition codes ZF �zero�� CF �carry�� and SF �sign�� Checking the
du�chains of these conditions we
nd that only �ag SF is used later on� thus� the other �ags
are not used after this de
nition� and are therefore dead� The de
nition of these �ags is
removed from the code associated with instruction ��� leading to the following code�

� cmp �bp
����bp
��� dx�ax � def 	 �SF� � du�SF�	����

�� jg B� � use 	 �SF�

The algorithm in Figure ����
nds all condition codes that are dead and eliminates them�

procedure DeadCCElim

�� Pre� du
chains on condition codes have been computed for all instructions�

� Post� dead condition codes are eliminated ��

for �each basic block b� do

for �each instruction i in b� do

for �each condition code c in def�i�� do

if �du�c� 	 � � then

def�i� 	 def�i�
 �c

end if

end for

end for

end for

end procedure

Figure ����� Dead Condition Code Elimination Algorithm

�	�� Condition Code Propagation

Dead�condition code elimination removes all de
nitions of condition codes that are not
used in the program� All remaining condition code de
nitions have a use in a subsequent
instruction� and are to be eliminated after capturing the essence of the condition� The
problem can be solved by means of du�chains or ud�chains in condition codes� either way
provides an equivalent solution� Consider the following code from basic block B�� Figure ���
with ud�chains on condition codes�

� cmp �bp
����bp
��� dx�ax � def 	 �SF�

�� jg B� � use 	 �SF� � ud�SF� 	 ���

For a particular �ag�s� use� we
nd the instruction that de
ned the �ag�s� and merge these
two instructions according to the Boolean condition implicit in the instruction that uses the
�ag� Instruction �� uses �ag SF� and implicitly checks for a greater�than Boolean condition�
Instruction �� de
nes the �ag used in instruction ��� and it compares the
rst identi
er
��bp
����bp
��� against the second identi
er �dx�ax�� If the
rst identi
er is greater than
the second identi
er� the SF is set� Other �ags that were originally set by this instruction
have been eliminated via dead�condition code elimination� so are not considered� It is

�	 Code�improving Optimizations ���

obvious from the function of these two instructions that the propagation of the condition
that sets the SF �i�e� comparing two identi
ers� to the instruction that uses this condition
will eliminate the instruction that de
nes the condition� and will generate a Boolean
condition for the instruction that uses the condition� In our example� the propagation
of the SF leads to the following code�

�� jcond ��bp
����bp
�� � dx�ax� B�

thus� eliminating all �ag references�

Condition Code Uses within Extended Basic Blocks

De�nition 	� An extended basic block is a sequence of basic blocks B�� � � � � Bn such that
for �
 i � n�Bi is the only predecessor of Bi��� and for � � i
 n�Bi has only a conditional
jump instruction�

Flag de
nition and uses occur in the same basic block in most programs� In some standard
cases� the �ag de
nition is not within the same block of the �ag use� but is within the same
extended basic block� as in the following code�

� cmp ax� dx � def 	 �SF�ZF� � du�SF� 	 ��� du�ZF� 	 ���

� jg Bx � use 	 �SF� � ud�SF� 	 ���

� je By � use 	 �ZF� � ud�ZF� 	 ���

In this case� instruction � de
nes two �ags� SF and ZF� The sign �ag is used by instruction
 �within the same basic block�� and the zero �ag is used by instruction � �in a di�erent
basic block but within the same extended basic block�� The sign condition from instruction
� is propagated to instruction � which checks for a greater�than Boolean condition� and
instruction is replaced by�

� cmp ax� dx � def 	 �ZF� � du�ZF� 	 ���

� jcond �ax � dx� Bx

� je By � use 	 �ZF� � ud�ZF� 	 ���

Since instruction � also de
nes the zero �ag� which is used at instruction �� the instruction
is not removed yet� as the identi
ers that form part of the Boolean condition need to be
known� Following the analysis� when instruction � is analyzed� the de
nition of the zero
�ag in instruction � is propagated to the use of this �ag in instruction �� and generates a
Boolean condition that checks for the equality of the two registers� Since there are no other
de
nitions of condition codes in instruction �� this instruction is now safely eliminated�
leading to the following code�

� jcond �ax � dx� Bx

� jcond �ax 	 dx� By

The algorithm can be extended to propagate condition codes that are de
ned in two or
more basic blocks �i�e� by doing an and of the individual Boolean conditions�� but it has
not been required in practice� since it is almost unknown for even optimising compilers to
attempt to track �ag de
nitions across basic block boundaries�Gou���� The algorithm in
Figure ���� propagates the condition codes within an extended basic block�

The Boolean conditional expressions derived from this analysis generate expressions of the
form described by the BNF in Figure ���� These expressions are saved as parse trees in
the intermediate high�level representation�

��� Data Flow Analysis

procedure CondCodeProp

�� Pre� dead
condition code elimination has been performed�

� the sets of defined and used flags has been computed for all

� instructions�

� ud
chains on condition codes have been computed for all instructions�

� Post� all references to condition codes have been eliminated ��

for �all basic blocks b in postorder�

for �all instructions i in b in last to first order�

if �use�i� #" � � then �� check for a flag use ��

for �all flags f in use�i�� do

j 	 ud�f�

def�j� 	 def�j�
 �f �� remove it from the set ��

propagate identifiers from instruction j to the Boolean

condition in instruction i �do not store repetitions��

if �def�j� 	 � � then

eliminate instruction j�

end if

end for

end if

end for

end for

end procedure

Figure ����� Condition Code Propagation Algorithm

Cond ��� �Cond � RelTerm� j �Cond j RelTerm� j RelTerm
RelTerm ��� Factor op Factor
Factor ��� register j localVar j literal j parameter j global
op ���
 j�j � j� j � j��

Figure ���� BNF for Conditional Expressions

�	�	 Register Arguments

The register calling convention is used by compilers to speed up the invocation of a
subroutine� It is an option available in most contemporary compilers� and is also used
by the compiler runtime support routines� Given a subroutine� register arguments translate
to registers that are used by the subroutine before being de
ned in the subroutine� i�e�
upwards exposed uses of registers overall the whole subroutine� Consider the following
code from basic blocks B� and B�� Figure ���� subroutine �aNlshl after condition code
elimination�

�	 Code�improving Optimizations ��

�� ch 	 �

� jcond �cx 	 �� B� � ud�ch� 	 ���� ud�cl� 	 ��

�� dx�ax 	 dx�ax �� � � ud�dx�ax� 	 ��

Instruction �� uses register cx� which has not been completely de
ned in this subroutine�
the high part� register ch is de
ned in instruction ��� but the low part is not de
ned at
all� A similar problem is encountered in instruction ��� the registers dx�ax are not de
ned
in the subroutine before being used� Information on registers used before being de
ned is
summarized by an intraprocedural live register analysis� a register is live on entrance to the
basic block that uses it� This analysis is done by solving the intraprocedural live register
equations of De
nition ��� or the equations for the
rst phase of precise interprocedural
live register analysis �De
nition ���� Performing live register analysis on subrotine �aNlshl
leads to the following LiveIn and LiveOut sets�

Basic Block LiveIn LiveOut
B� fdx�ax�clg fdx�axg
B� fdx�axg fg
B� fg fg

The set of LiveIn registers summarized for the header basic block B� is the set of register
arguments used by the subroutine� dx� ax� and cl in this example� The formal argument
list of this subroutine is updated to re�ect these two arguments�

formal�arguments��aNlshl� 	 �arg� 	 dx�ax� arg� 	 cl�

It is said that the �aNlshl subroutine uses these registers� In general� any subroutine that
makes use of register arguments uses those registers� thus� an invocation to one of these
subroutines �i�e� a call instruction� is also said to use those registers� as in the following
instruction�

�� call �aNlshl � use 	 �dx� ax� cl�

The algorithm in Figure ����
nds the set of register arguments �if any� to a subroutine�

�	�
 Function Return Register�s�

Functions return results in registers� and there is no machine instruction that states which
registers are being returned by the function� After function return� the caller uses the
registers returned by the function before they are rede
ned �i�e� these registers are live
on entrance to the basic block that follows the function call�� This register information is
propagated across subroutine boundaries� and is solved with a reaching and live register
analysis� Consider the following code from basic blocks B and B�� Figure ����

�� dx�ax 	 �bp
����bp
�� � def 	 �dx� ax� use 	 ��

�� call �aNlshl � def 	 �� use 	 �dx� ax� cl�

�� �bp
����bp
�� 	 dx�ax � def 	 �� use 	 �dx� ax�

��� Data Flow Analysis

procedure FindRegArgs �s� subroutineRecord�

�� Pre� intraprocedural live register analysis has been performed on

� subroutine s�

� Post� uses�s� is the set of register arguments of subroutine s� ��

if �LiveIn�headerNode�s�� #" � � then

uses�s� 	 LiveIn�headerNode�s��

else

uses�s� 	 �

end if

end procedure

Figure ����� Register Argument Algorithm

Instruction uses registers dx�ax� these registers are de
ned in instruction �� but between
this de
nition and the use a subroutine call occurs� Since it is not known whether this
subroutine is a procedure or a function� it is not safe to assume that the de
nition in
instruction � is the one reaching the use in instruction � Summary information is
needed to determine which de
nition reaches instruction � Performing an intraprocedural
reaching register analysis on subroutine �aNlshl leads to the following ReachIn and
ReachOut sets�

Basic Block ReachIn ReachOut
B� fg fchg
B� fchg fcx�dx�axg
B� fcx�dx�axg fcx�dx�axg

This analysis states that the last de
nitions of registers cx� dx� and ax reach the end of
the subroutine �i�e� ReachOut set of basic block B��� The caller subroutine uses only some
of these reaching registers� thus it is necessary to determine which registers are upwards
exposed in the successor basic block�s� to the subroutine invocation� This information is
calculated by solving the interprocedural live register equations of De
nition ��� or the
second phase of precise interprocedural live register analysis �De
nition ���� Since the
information needs to be accurate� the live register analysis equations are solved in an
optimistical way� i�e� a register is live if a use of that register is seen in a subsequent
node� The following LiveIn and LiveOut sets are calculated for the example of Figure ����

Basic Block LiveIn LiveOut
B� fg fg
B fg fdx�axg
B� fdx�axg fg
B� fg fg
B� fdx�ax�clg fdx�axg
B� fdx�axg fdx�axg
B� fdx�axg fdx�axg

�	 Code�improving Optimizations ���

From the three registers that reach basic block B�� only two of these registers are used �i�e�
belong to LiveIn of B��� dx�ax� thus� these registers are the only registers of interest once
the called subroutine has been
nished� and are the registers returned by the function� The
condition that checks for returned registers is�

ReachOut�B��
T
LiveIn�B�� � fdx�axg

In general� a subroutine can have one or more return nodes� therefore� the ReachOut�� set
of the subroutine must have all registers that reach each single exit� The following equation
summarizes the ReachOut information for a subroutine s�

ReachOut�s� � �BireturnReachOut�Bi�

Once a subroutine has been determined to be a function� and the register�s� that the function
returns has been determined� this information is propagated to two di�erent places� the
return instruction�s� from the function� and the instructions that call this function� In the
former case� all return basic blocks have a ret instruction� and this instruction is modi
ed
to return the registers that the function returns� In our example� instruction �	 of basic
block B�� Figure ��� is modi
ed to the following code�

�� ret dx�ax

In the latter case� any function invocation instruction �i�e� call instruction� is replaced
by an asgn instruction that takes as left�hand side the de
ned register�s�� and takes the
function call as the right�hand side of the instruction� as in the following code�

�� dx�ax 	 call �aNlshl � def 	 �dx�ax� use 	 �dx� ax� cl�

The instruction is transformed into an asgn instruction� and de
nes the registers on the
left�hand side �lhs��

The algorithm in Figure ���� determines which subroutines are functions �i�e� return a value
in a register�s��� It is important to note that in the case of library functions whose return
register�s� is not used� the call is not transformed into an asgn instruction but remains as
a call instruction�

�	�� Register Copy Propagation

Register copy propagation is the method by which a de
ned register in an assignment
instruction� say ax 	 cx� is replaced in a subsequent instruction�s� that references or uses
this register� if neither register is modi
ed �i�e� rede
ned� after the assignment �i�e� neither
ax nor cx is modi
ed�� If this is the case� references to register ax are replaced by references
to register cx� and� if all uses of ax are replaced by cx then ax becomes dead and the
assignment instruction is eliminated� A use of ax can be replaced with a use of cx if
ax 	 cx is the only de
nition of ax that reaches the use of ax and if no assignments to cx
have occurred after the instruction ax 	 cx� The former condition is checkedwith ud�chains
on registers� The latter condition is checked with an r�clear condition �i�e� a forward��ow�
all�paths analysis�� Consider the following code from basic block B� Figure ��� with ud�
chains and du�chains�

��� Data Flow Analysis

procedure FindRetRegs

�� Pre� interprocedural live register analysis has been performed�

� intraprocedural reaching register definition has been performed�

� Post� def�f� is the set of registers returned by a function f�

� call instruction to functions are modified to asgn instructions�

� ret instructions of functions return the function return registers���

for �all subroutines s� do

for �all basic blocks b in postorder� do

for �all instructions i in b� do

if �i is a call instruction to subroutine f� then

if �function�f� 		 False� then �� f is not a function so far ��

def�i� 	 LiveIn�succ�b�� intersect ReachOut�f�

if �def�i� #" � � then �� it is a function ��

def�f� 	 def�i�

function�f� 	 True

rhs�i� 	 i �� convert i into an asgn inst ��

lhs�i� 	 def�f�

opcode�i� 	 asgn

for �all ret instructions j of function f� do

exp�j� 	 def�f� �� propagate return register�s� ��

end for

end if

else �� f is a function ��

rhs�i� 	 i �� convert i into an asgn inst ��

lhs�i� 	 def�f�

opcode�i� 	 asgn

def�i� 	 def�f� �� registers defined by i ��

end if

end if

end for

end for

end for

end procedure

Figure ����� Function Return Register�s�

�� dx�ax 	 �bp
����bp
�� � du�dx�ax� 	 ����

�� dx�ax 	 dx�ax
 �bp
����bp
� � ud�dx�ax� 	 ���� du�dx�ax� 	 ����

�� �bp
����bp
�� 	 dx�ax � ud�dx�ax� 	 ����

Following the ud�chains of these instructions� instruction �� uses registers dx�ax� which were
de
ned in instruction ��� Since these registers have not been rede
ned between instructions
�� and ��� the right�hand side of the instruction is replaced in the use of the registers as
follows�

�� dx�ax 	 �bp
����bp
��
 �bp
����bp
� � du�dx�ax�	����

�	 Code�improving Optimizations ���

Since there is only one use of these registers at instruction �� �i�e� du�dx�ax� � ���� the
registers are now dead and thus� the instruction is eliminated� In a similar way� instruction
�	 uses registers dx�ax� which are de
ned in instruction ��� Since these registers have
not been rede
ned between those two instructions� the right�hand side of instruction �� is
replaced into the use of the registers in instruction �	� leading to�

�� �bp
����bp
�� 	 �bp
����bp
��
 �bp
����bp
�

Since there was only one use of the registers de
nition at instruction ��� these registers
become dead and the instruction is eliminated� As noticed in this example� the right�hand
side of an instruction i can be replaced into a further use of the left�hand side of instruction
i� building expressions on the right�hand side of an assignment instruction�

Consider another example from basic block B�� Figure ���� after dead�register elimination�
and with ud�chains and du�chains on registers �excluding register variables��

� ax 	 si � � du�ax� 	 ��

 dx�ax 	 ax � ud�ax� 	 ��� � du�dx�ax� 	 ���

� tmp 	 dx�ax � ud�dx�ax� 	 �� � du�tmp� 	 ���

� ax 	 tmp � di � ud�tmp� 	 ��� � du�ax� 	 ���

� dx 	 � � � du�dx� 	 ���

� ax 	 ax � dx � ud�ax� 	 ��� ud�dx� 	 ��� � du�ax� 	 ����

�� si 	 ax � ud�ax� 	 ���

The use of register ax in instruction � is replaced with a use of the register variable si�
making the de
nition of ax in � dead� The use of dx�ax in instruction � is replaced with a use
of si �from instruction ��� making the de
nition of dx�ax dead� The use of tmp in instruction
� is replaced with a use of si �from instruction ��� making the de
nition of tmp dead at
�� The use of ax at instruction � is replaced with a use of �si � di� from instruction ��
making the de
nition of ax dead� In the same instruction� the use of dx is replaced with a
use of constant � from instruction 	� making the de
nition of dx at 	 dead� Finally� the use
of ax at instruction �� is replaced with a use of �si � di� � � from instruction �� making
the de
nition of ax at � dead� Since the register�s� de
ned in instructions � � � were used
only once� and all these registers became dead� the instructions are eliminated� leading to
the
nal code�

�� si 	 �si � di� � �

When propagating registers across assignment instructions� a register is bound to be de
ned
in terms of an expression of other registers� local variables� arguments� and constants� Since
any of these identi
ers �besides constants� can be rede
ned� it is necessary to check that
none of these identi
ers is rede
ned across the path from the instruction that de
nes the
register to the instruction that uses it� Thus� the following necessary conditions are checked
for register copy propagation�

�� Uniqueness of register de
nition for a register use� registers that are used before being
rede
ned translate to temporary registers that hold an intermediate result for the
machine� This condition is checked by means of ud�chains on registers used in an
instruction�

��	 Data Flow Analysis

� rhs�clear path� the identi
ers x in an expression that de
nes a register r �i�e� the rhs
of the instruction� that satis
es condition � are checked to have an x�clear path to the
instruction that uses the register r� The rhs�clear condition for an instruction j that
uses a register r which is uniquely de
ned at instruction i is formally de
ned as�

rhs�cleari�j �
�

x�rhs�i�

x�cleari�j

where rhs�i� � the right hand side of instruction i
and x � an identi
er that belong to the rhs�i�

and x�cleari�j �

�
True if there is no de
nition of x along the path i� j
False otherwise

The algorithm in Figure ���� performs register copy propagation on assignment instructions�
For this analysis� registers that can be used as both word and byte registers �e�g� ax� ah�
al� are treated as di�erent registers in the live register analysis� Whenever register ax is
de
ned� it also de
nes registers ah and al� but� if register al is de
ned� it de
nes only
registers al and ax� but not register ah� This is needed so that uses of part of a register
�e�g� high or low part� can be detected and treated as a byte operand rather than an integer
operand�

Extension to Non�Assignment Register Usage Instructions

The algorithm given in Figure ���� is general enough to propagate registers that are used in
instructions other than assignments� such as push� call� and jcond instructions� Consider
the following code from basic block B�� Figure ��� after condition code propagation�

�� dx�ax 	 �bp
����bp
� � du�dx�ax� 	 ����

�� jcond ��bp
����bp
�� � dx�ax� B� � ud�dx�ax� 	 ����

Instruction �� uses registers dx�ax� which are uniquely de
ned in instruction ��� The rhs
of instruction �� is propagated to the use of these registers� leading to the elimination of
instruction ��� The
nal code looks as follows�

�� jcond ��bp
����bp
�� � �bp
����bp
�� B�

In a similar way� a use of a register in a push instruction is replaced by a use of the rhs
of the instruction that de
nes the register� as in the following code from basic block B��
Figure ��� after dead�register elimination�

�� ax 	 si � du�ax� 	 ����

�� dx 	 � � du�dx� 	 ����

�� ax 	 ax � dx � ud�dx� 	 ���� du�ax� 	 ����

�� push ax � ud�ax� 	 ����

Applying the register copy propagation algorithm we arrive at the following code�

�� push �si � ��

and instruction �� �� and � are eliminated�

A call instruction that has been modi
ed into an asgn instruction due to a function being
invoked rather than a procedure is also a candidate for register copy propagation� Consider
the following code after function return register determination�

�	 Code�improving Optimizations ��

procedure RegCopyProp

�� Pre� dead
register elimination has been performed�

� ud
chains and du
chains have been computed for all instructions�

� Post� most references to registers have been eliminated�

� high
level language expression have been found� ��

for �all basic blocks b in postorder� do

for �all instructions j in basic block b� do

for �all registers r used by instruction j� do

if �ud�r� 	 �i � then �� r is uniquely defined at instruction i ��

prop 	 True

for �all identifiers x in rhs�i�� do �� compute rhs
clear ��

if �not x
clear�i� j�� then

prop 	 False

end if

end for

if �prop 		 True� then �� propagate rhs�i� ��

replace the use of r in instruction j with rhs�i�

du�r� 	 du�r�
 �j �� at instruction i ��

if �du�r� 	 � � then

if �i defines only register r� then

eliminate i

else

modify instruction i not to define register r

def�i� 	 def�i�
 �r

end if

end if

end if �� end propagate ��

end if

end for

end for

end for

end procedure

Figure ����� Register Copy Propagation Algorithm

�� dx�ax 	 call �aNlshl � ud�dx�ax� 	 ���� ud�cl� 	 ����

� du�dx�ax� 	 ����

�� �bp
����bp
�� 	 dx�ax � ud�dx�ax� 	 ����

The function �aNlshl returns a value in registers dx�ax� These registers are used in the

rst instruction of the basic block that follows the current one� and are copied to the
nal
local long variable at o�set
�� Performing copy propagation leads to the following code�

�� �bp
����bp
�� 	 call �aNlshl

eliminating instruction � as dx�ax become dead�

��� Data Flow Analysis

�	�� Actual Parameters

Actual parameters to a subroutine are normally pushed on the stack before invocation to
the subroutine� Since nested subroutine calls are allowed in most languages� the arguments
pushed on the stack represent those arguments of two or more subroutines� thus� it is
necessary to determine which arguments belong to which subroutine� To do this� an
expression stack is used� which stores the expressions associated with push instructions�
Whenever a call instruction is met� the necessary number of arguments are popped from
the stack� Consider the following code from basic block B�� Figure ��� after dead�register
elimination and register copy propagation�

� push �bp
����bp
��

�� push �si � ��

�� push ��

�� call printf

Instructions �� 	� and �� push the expressions associated with each instruction into a
stack� as shown in Figure ����� When the call to printf is reached� information on this
function is checked to determine how many bytes of arguments the function call takes� in
this case it takes 	 bytes� Expressions from the stack are then popped� checking the type
of the expressions to determine how many bytes are used by each� The
rst expression
is an integer constant which takes bytes� the second expression is an integer expression
which takes bytes� and the third expression is a long variable which takes � bytes� for a
total of 	 bytes needed by this function call� The expressions are popped from the stack
and placed on the actual parameter list of the invoked subroutine according to the calling
convention used by the subroutine� In our example� the library function printf uses C
calling convention� leading to the following code�

�� call printf ���� si � �� �bp
����bp
���

Instructions �� 	� and �� are eliminated from the intermediate code when they are placed
on the stack�

�
��

si � �

tos

�bp���
�bp��

Figure ����� Expression Stack

Register arguments are not pushed on the stack� but have been de
ned in the use set of the
subroutine that uses them� In this case� placing the actual arguments to a subroutine in the
actual argument list is an extension of the register copy propagation algorithm� Consider
the following code from basic blocks B and B�� Figure ��� after dead register elimination�
and register argument detection�

�� cl 	 � du�cl� 	 ����

�� dx�ax 	 �bp
����bp
�� � du�dx�ax� 	 ����

�� dx�ax 	 call �aNlshl � ud�dx�ax� 	 ���� ud�cl� 	 ����

�	 Code�improving Optimizations ���

Instruction � uses registers dx�ax� de
ned in instruction �� and register cl� de
ned in
instruction ��� These uses are replaced with uses of the rhs of the corresponding instructions�
and placed on the actual argument list of �aNlshl in the order de
ned by the formal
argument list� leading to the following code�

�� dx�ax 	 call �aNlshl ��bp
����bp
��� �

Instruction �� and � are eliminated since they now de
ne dead registers�

�	�� Data Type Propagation Across Procedure Calls

During the instantiation of actual arguments to formal arguments� data types for these
arguments needs to be veri
ed� as if they are di�erent� one of the data types needs to be
modi
ed� Consider the following code from basic block B�� Figure ��� after all previous
optimizations�

�� call printf ���� si � �� �bp
����bp
���

where the actual argument list has the following data types� integer constant� integer� and
long variable� The formal argument list of printf has a pointer to a character string as
the
rst argument� and a variable number of unknown data type arguments following it�
Since there is information on the
rst argument only� the
rst actual argument is checked�
and it is found that it has a di�erent data type� Given that the data types used by the
library subroutines must be right �i�e� they are trusted�� it is safe to say that the actual
integer constant must be an o�set into memory� pointing to a character string� By checking
memory� it is found that at location DS����� there is a string� thus� the integer constant
is replaced by the string itself� The next two arguments have unknown formal type� so the
type given by the caller is trusted� leading to the following code�

�� call printf ��c � � 	 �d� a 	 �ld n�� si � �� �bp
����bp
���

Other cases of type propagation include the conversion of two integers into one long variable
�i�e� the callee has determined that one of the arguments is a long variable� but the caller
has so far used the actual argument as two separate integers��

�	� Register Variable Elimination

Register variables translate to local variables in a high�level language program� These
registers are replaced by new local variable names� This name replacement can be done
during data �ow analysis� or by the code generator� In our example� if registers si and di

are replaced by the local names loc� and loc�� the following code fragment will be derived
for part of basic block B�� Figure ����

� loc� 	 ��

� loc� 	 ��

� loc� 	 �loc� � loc�� � �

��� Data Flow Analysis

�	��� An Extended Register Copy Propagation Algorithm

The optimizations of register copy propagation� actual parameter detection� and data type
propagation across procedure calls can be performed during the one pass that propagates
register information to other instructions� including arguments� Figure ���� lists the
di�erent high�level instructions that de
ne and use registers� Only � instructions can
de
ne registers� an asgn� which is eliminated via register copy propagation as explained in
Section ����� a function call� which is translated into an equivalent asgn instruction and
eliminated by the register copy propagation method� and a pop instruction� which has not
been addressed yet�

De
ne Use
asgn �lhs� asgn �rhs�
call �function� call �register arguments�
pop jcond

ret �function return registers�
push

Figure ����� Potential High�Level Instructions that De
ne and Use Registers

A pop instruction de
nes the associated register with whatever value is found on the top
of stack� Given that pop instructions used to restore the stack after a subroutine call� or
during subroutine return have already been eliminated from the intermediate code during
idiom analysis �see Chapter �� Sections ���� and ������ the only remaining use of a pop

instruction is to get the last value pushed onto the stack by a previous push instruction �i�e�
a spilled value�� Since expressions associated with push instructions were being pushed onto
an expression stack for the detection of actual arguments �see Section ������� whenever a
pop instruction is reached� the expression on the top of stack is associated with the register
of the pop instruction� converting the instruction into an asgn instruction� Consider the
following code from a matrix addition procedure that spills the partially computed answer
onto the stack at instructions � and �	� after dead�register elimination� In this example�
three arrays have been passed as arguments to the procedure� the arrays pointed to by bp�
and bp�� are the two array operands� and the array pointed to by bp�� is the resultant
array� The three arrays are arrays of integers �i�e� bytes��

�� ax 	 si � ud�ax� 	 ����

�� dx 	 �h � ud�dx� 	 ����

�� ax 	 ax � dx � ud�ax� 	 ����

�� bx 	 ax � ud�bx� 	 ����

�� bx 	 bx � �bp�� � ud�bx� 	 ����

�� ax 	 di � ud�ax� 	 ���

� ax 	 ax �� � � ud�ax� 	 ����

�� bx 	 bx � ax � ud�bx� 	 ����

�� ax 	 �bx� � ud�ax� 	 ����

�� push ax � spill ax

�� ax 	 si � ud�ax� 	 ����

�� dx 	 �h � ud�dx� 	 ����

�	 Code�improving Optimizations ��

�� ax 	 ax � dx � ud�ax� 	 ����

�� bx 	 ax � ud�bx� 	 ����

�� bx 	 bx � �bp��� � ud�bx� 	 ����

�� ax 	 di � ud�ax� 	 ���

� ax 	 ax �� � � ud�ax� 	 ����

�� bx 	 bx � ax � ud�bx� 	 ����

�� pop ax � ud�ax� 	 ����

�� ax 	 ax � �bx� � ud�ax� 	 ����

�� push ax � spill ax

�� ax 	 si � ud�ax� 	 ���

� dx 	 �h � ud�dx� 	 ���

� ax 	 ax � dx � ud�ax� 	 ���

� bx 	 ax � ud�bx� 	 ���

� bx 	 bx � �bp��� � ud�bx� 	 ���

 ax 	 di � ud�ax� 	 ���

� ax 	 ax �� � � ud�ax� 	 ���

� bx 	 bx � ax � ud�bx� 	 ���

� pop ax � ud�ax� 	 ���

� �bx� 	 ax

After register copy propagation on instructions �	 � �� instruction � holds the contents
of the array pointed to by bp� o�set by si and di �row and column o�sets�� represented
by the following expression�

�� push ��si���� � �bp�� � �di����

this expression is pushed on the stack� and register ax is rede
ned in the next instruction�
Following extended register copy propagation� instruction �� pops the expression on the
stack� and is modi
ed to the following asgn instruction�

�� ax 	 ��si���� � �bp�� � �di���� � ud�ax� 	 ����

this instruction is replaced into instruction ��� and register ax is spilled at instruction �	
holding the addition of the contents of the two arrays at o�sets si and di� represented by
the following expression�

�� push ��si���� � �bp�� � �di���� � ��si���� � �bp��� � �di����

Finally� this expression is popped in instruction ��� replacing the pop by the following asgn
instruction�

� ax 	 ��si���� � �bp�� � �di���� � ��si���� � �bp��� � �di����

and register bx holds the o�set into the result array at o�sets si and di� The registers in
instruction �	 are replaced by the expressions calculated in instructions �� and ��� leading
to the following code�

� ��si���� � �bp��� � �di���� 	 ��si���� � �bp�� � �di���� �

��si���� � �bp��� � �di����

��� Data Flow Analysis

Note that this instruction does not de�ne any registers� only uses them� therefore� this
instruction is
nal in the sense that it cannot be replaced into any subsequent instruction�
As seen� the rhs and lhs hold expressions that calculate an address of an array� These
expressions can be further analyzed to determine that they calculate an array o�set� and
thus� the arguments passed to this subroutine are pointers to arrays� this information can
then be propagated to the caller subroutine�

Figure ���	 is a description of the
nal algorithm used for extended register copy propaga�
tion�

��� Further Data Type Propagation

Further data type determination can be done once all program expressions have been found�
since data types such as arrays use address computation to reference an object in the array�
This address computation is represented by an expression that needs to be simpli
ed in order
to arrive to a high�level language expression� Consider the array expression of Section �������

� ��si���� � �bp��� � �di���� 	 ��si���� � �bp�� � �di���� �

��si���� � �bp��� � �di����

A heuristic method can be used to determine that the integer pointer at bp�� is a �
dimensional array given that o�set expressions are used to compute an address� The
o�set di�� is adjusting the index di by the size of the array element type � in this case
for an integer�� and the o�set si��� is adjusting the index si by the size of the row times
the size of the array element �i�e� � � � �� elements in a row� or the number of columns
in the array�� therefore� the expression could be modi
ed to the following code�

� �bp����si��di� 	 �bp���si��di� � �bp����si��di�

and the type of the arguments are modi
ed to array �i�e� a pointer to an integer array��
In order to determine the bounds of the array� more heuristic intervention is needed� The
number of elements in the one row was determined by the previous heuristic� the number
of rows can be determined if the array is within a loop or any other structure that gives
information regarding the number of rows� Consider the matrix addition subroutine in Fig�
ure �����

This subroutine has two loops� one for the rows and one for the columns� By checking all
conditional jumps for references to index si� the upper bound on the number of rows can
be determined� In basic block B� si is compared against �� if si is greater or equal to ��
the loop is not executed �i�e� the array is not indexed into�� therefore� we can assume that
this is the upper bound on rows� The number of columns can also be checked by
nding
conditional jump instructions that use register di� In this case� basic block B� compares
this register against ��� if the register is greater or equal to this constant� the inner loop is
not executed �i�e� the array is not indexed into�� Therefore� this constant can be used as
the upper bound for the number of columns� Note that this number is the same as the one
that was already known from the heuristics in determining an array address computation�
therefore� we assume the number is right� This leads to the following formal argument
declaration�

�
 Further Data Type Propagation ���

procedure ExtRegCopyProp �p� subroutineRecord�

�� Pre� dead
register analysis has been performed�

� dead
condition code analysis has been performed�

� register arguments have been detected�

� function return registers have been detected�

� Post� temporary registers are removed from the intermediate code� ��

initExpStk���

for �all basic blocks b of subroutine p in postorder� do

for �all instructions j in b� do

for �all registers r used by instruction j� do

if �ud�r� 	 �i � then �� uniquely defined at instruction i ��

case �opcode�i��

asgn� if �rhsClear �i� j��

case �opcode�j��

asgn� propagate �r� rhs�i�� rhs�j���

jcond� push� ret� propagate �r� rhs�i�� exp�j���

call� newRegArg �r� actArgList�j���

end case

end if

pop� exp 	 popExpStk���

case �opcode�j��

asgn� propagate �r� exp� rhs�j���

jcond� push� ret� propagate �r� exp� exp�j���

call� newRegArg �exp� actArgList�j���

end case

call� case �opcode�j��

asgn� rhs�j� 	 i�

push� ret� jcond� exp�j� 	 i�

call� newRegArg �i� actArgList�j���

end case

end case

end if

end for

if �opcode�i� 		 push� then

pushExpStk �exp�i���

elsif �opcode�i� 		 call� and �invoked routine uses stack arguments� then

pop arguments from the stack�

place arguments on actual argument list�

propagate argument type�

end if

end for

end for

end procedure

Figure ���	� Extended Register Copy Propagation Algorithm

��� Data Flow Analysis

�

�

�

������

HHHHHj

�

������

PPPPPPPPq

��

�
�

B	

jcond �si � �� B�

�bp���si��di� � �bp����si��di� � �bp����si��di�

ret di � �

jcond �di � ��� B�

si � si � �

di � di � �

si � �

B�

B�

B�B�

B�

B�

Figure ����� Matrix Addition Subroutine

formal�arguments �arg�� array������� 	 �bp���

arg�� array������� 	 �bp����

arg�� array������� 	 �bp����

and the information is propagated to the caller subroutine�

It is in general hard to determine the bounds of an array if the code was optimised�
For example� if strength reduction had been applied to the subscript calculation� or code
motion had moved part of the subscript calculation out of the loop� or if induction variable
elimination had replaced the loop indexes� then the previous heuristic method could not be
applied� In this case� the decompiler would either leave the bounds of the array unknown�
or ask the user for a solution via an interactive session�

Chapter 	

Control Flow Analysis

T he control �ow graph constructed by the front�end has no information on high�level lan�
guage control structures� such as if��then��elses and while�� loops� Such a graph

can be converted into a structured high�level language graph by means of a structuring
algorithm� High�level control structures are detected in the graph� and subgraphs of control
structures are tagged in the graph� The relation of this phase with the data �ow analysis
phase and the back�end is shown in Figure ����

�� � � � �� � � �� �Front�end program
� � � � � � � � � �

� � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

HLL

Analysis

unstructured
graph

Control Flow
Analysis

Back�endgraph
structuredData Flow

Figure ���� Context of the Control Flow Analysis Phase

A generic set of high�level control structures is used to structure the graph� This set
should be general enough to cater for di�erent control structures available in commonly
used languages such as C� Pascal� Modula�� and Fortran� Such structures should include
di�erent types of loops and conditionals� Since the underlying structure of the graph is not
modi
ed� functional and semantical equivalence is preserved by this method�

��� Previous Work

Most structuring algorithms have concentrated on the removal of goto statements from
control �ow graphs at the expense of introduction of new Boolean variables� code replication�
the use of multilevel exit loops� or the use of a set of high�level structures not available in
commonly used languages� A graph transformation system has also been presented� it aims
at the recognition of the underlying control structures without the removal of all goto
statements� The following sections summarize the work done in this area�

����� Introduction of Boolean Variables

B$ohm and Jacopini�BJ��� proved that any program �owgraph can be represented by another
�owgraph which is decomposable into 	 �sequence of nodes��
 �post�tested loop�� and �
��way conditional node� with the introduction of new Boolean variables and assignments
to these variables� Cooper�Coo��� pointed out that if new variables may be introduced to
the original program� any program can be represented in one node with at most one
�
therefore� from a practical point of view� the theorem is meaningless�Knu����

��	 Control Flow Analysis

Ashcroft and Manna�AM��� demonstrated that goto programs cannot be converted into
while�� programs without the introduction of new variables� and presented an algorithm
for the conversion of these programs with the introduction of new Boolean variables� The
conversion preserves the topology of the original �owchart program� but performs compu�
tations in di�erent order�

Williams and Ossher�WO�	� presented an iterative algorithm to convert a multiexit loop
into a single exit loop� with the introduction of one Boolean variable and a counter integer
variable for each loop�

Baker and Zweben�BZ	�� reported on the structuring of multiexit loops with the introduc�
tion of new Boolean variables� The structuring of multiple exit loops is considered a control
�ow complexity issue� and is measured in this paper�

Williams and Chen�WG	�� presented transformations to eliminate goto statements from
Pascal programs� Gotos were classi
ed according to the positioning of the target label� at
the same level as the corresponding label� branch out of a structure� transferral of a label
out of a structure� and abnormal exits from subroutines� All these transformations required
the introduction of one or more Boolean variables� along with the necessary assignment and
test statements to check on the value of a Boolean� The algorithm was implemented in
Prolog on a PDP������

Erosa and Hendren�EH��� present an algorithm to remove all goto statements from C pro�
grams� The method makes use of goto�elimination and goto�movement transformations�
and introduces one new Boolean variable per goto� On average� three new instructions are
introduced to test for each new Boolean� and di�erent loop and if conditionals are modi
ed
to include the new Boolean� This method was implemented as part of the McCAT paral�
lelizing decompiler�

The introduction of new �Boolean� variables modi�es the semantics of the underlying
program� as these variables do not form part of the original program� The resultant program
is functionally equivalent to the original program� thus it produces the same results�

����� Code Replication

Knuth and Floyd�KF��� presented di�erent methods to avoid the use of goto statements
without the introductions of new variables� Four methods were given� the introduc�
tion of recursion� the introduction of new procedures� node splitting� and the use of a
repeat��until�� construct� The use of the node splitting technique replicates code in the

nal program� It is also proved that there exist programs whose goto statements cannot
be eliminated without the introduction of new procedure calls�

Williams�Wil��� presents
ve subgraphs which lead to unstructured graphs� abnormal selec�
tion paths� multiple exit loops� multiple entry loops� overlapping loops� and parallel loops�
In order to transform these subgraphs into structured graphs� code duplication is performed�

��� Previous Work ��

Williams and Ossher�WO�	� presented an algorithm to replace multiple entry loops by sin�
gle entry while�� loop� The method made use of code duplication of all nodes that could
be reached from abnormal entries into the loop�

Baker and Zweben�BZ	�� reported on the use of the node splitting technique to generate
executionally equivalent �owgraphs by replicating one or more nodes of the graph� Node
splitting was considered a control �ow complexity issue� and was measured�

Oulsnam�Oul	� presented transformations to convert six types of unstructured graphs to
structured equivalent graphs� The methodology made use of node duplication� but no func�
tion duplication� It was demonstrated that the time overhead produced by the duplication
of nodes was an increased time factor of � for at least one path�

Code replication modi�es the original program�graph by replicating code�node one or
more times� therefore� the �nal program�graph is functionally equivalent to the original
program�graph� but its semantics and structure have been modi�ed�

����� Multilevel Exit Loops and Other Structures

Baker�Bak��� presented an algorithm to structure �owgraphs into equivalent �owgraphs
that made use of the following control structures� if��then��else� multilevel break� mul�
tilevel next� and endless loops� Gotos were used whenever the graph could not be structured
using the previous structures� The algorithm was extended to irreducible graphs as well�
It was demonstrated that the algorithm generated well�formed and properly nested pro�
grams� and that any goto statements in the
nal graph jumped forward� This algorithm
was implemented in the struct program on a PDP����� running under Unix� It was used
to rewrite Fortran programs into Ratfor� an extended Fortran language that made use of
control structures� The struct program was later used by J�Reuter in the decomp decom�
piler to structure graphs built from object
les with symbol information�

Sharir�Sha	�� presented an algorithm to
nd the underlying control structures in a �ow
graph� This algorithm detected normal conditional and looping constructs� but also de�
tected proper and improper strongly�connected intervals� and proper and improper outer�
most intervals� The
nal �ow graph was represented by a hierarchical �ow structure�

Ramshaw�Ram		� presented a method to eliminate all goto statements from programs� by
means of forward and backward elimination rules� The resultant program was a structurally
equivalent program that made use of multilevel exits from endless�type� named loops� This
algorithm was used to port the Pascal version of Knuth�s TEX compiler into the PARC�CSL�
which uses Mesa� Both these languages allow the use of goto statements� but outward gotos
are not allowed in Mesa�

The use of multilevel exits or high�level constructs not available in most languages restricts
the generality of the structuring method and the number of languages in which the structured
version of the program can be written� Currently� most �rd generation languages �e�g�
Pascal� Modula��� C� do not make use of multilevel exits� only Ada allows them�

��� Control Flow Analysis

����	 Graph Transformation System

Lichtblau�Lic	�� presented a series of transformation rules to transform a control �ow graph
into a trivial graph by identifying subgraphs that represent high�level control structures�
such as �way conditionals� sequence� loops� and multiexit loops� Whenever no rules were
applicable to the graph� an edge was removed from the graph and a goto was generated
in its place� This transformation system was proved to be
nite Church�Rosser� thus the
transformations could be applied in any order and the same
nal answer is reached�

Lichtblau formalized the transformation system by introducing context�free �owgraph gram�
mars� which are context�free grammars de
ned by production rules that transform one graph
into another�Lic���� He proved that given a rooted context�free �owgraph grammar GG� it
is possible to determine whether a �owgraph g can be derived from GG� He provided an
algorithm to solve this problem in polynomial time complexity�

The detection of control structures by means of graph transformations does not modify the
semantics or functionality of the underlying program� thus a transformation system provides
a method to generate a semantically equivalent graph� Lichtblau�s method uses a series of
graph transformations on the graph to convert�transform the graph into an equivalent struc�
tured graph �if possible�� These transformations do not take into account graphs generated
from short�circuit evaluation languages� where the operands of a compound Boolean condi�
tion are not all necessarily evaluated� and thus generate unstructured graphs according to
this methodology�

In contrast� the structuring algorithms presented in this thesis transform an arbitrary control
�ow graph into a functional and semantical equivalent �ow graph that is structured under
a set of generic control structures available in most commonly used high�level languages�
and that makes use of goto jumps whenever the graph cannot be structured with the generic
structures� These algorithms take into account graphs generated by short�circuit evaluation�
and thus do not generate unnecessary goto jumps for these graphs�

��� Graph Structuring

The structuring of a sample control �ow graph is presented in an informal way� The al�
gorithms used to structure graphs are explained in Section ���� The control �ow graph of
Figure �� is a sample program that contains several control structures� The intermediate
code has been analyzed by the data �ow analysis phase� and all variables have been given
names�

The aim of a structuring algorithm for decompilation is to determine all underlying control
structures of a control �ow graph� based upon a predetermined set of high�level control
structures� If the graph cannot be structured with the prede
ned set of structures� goto
jumps are used� These conditions ensure functional and semantical equivalence between the
original and
nal graph�

��� Graph Structuring ���

loc� � loc� � �

loc	 � loc	 � �
printf ������� loc�� loc	�

loc	 � loc�jcond �loc� � loc�� B�

jcond ��loc� � 	� �� loc�� B��

loc� � loc� � loc� � ��
loc� � loc� � 	

loc� � �

loc� � loc� �� �

loc� � loc� � loc�
jcond ��loc� � �� �� loc�� B�

loc� � �
loc� � loc� � �
jcond �loc� �� loc�� B�

printf ������� loc�� loc��

ret

��

�

�

��

�

�

					
B�
XXXXXz

XXXXXz
������

�

					

XXXXXXz

�����

�
���

PPPPPq

�

�

�

A
A
A
A
AAU

A
A
A
AA					

�

B�

B	

B�

B�

B�

B�

B

B�

B��

B��

B��

B��

B��

B�	

jcond �loc� � ��� B�	

jcond �loc	 � �� B��

loc� � loc� �� �

Figure ��� Sample Control Flow Graph

����� Structuring Loops

In graphs� loops are detected by the presence of a back�edge� that is� an edge from a �lower�
node to a �higher� node� The notion of lower and higher are not formally de
ned yet� but
can be thought as the nodes that are lower and higher up in the diagram �for a graph that
is drawn starting at the top�� In the graph of Figure �� there are back�edges� �B���B����
and �B���B��� These back�edges represent the extent of di�erent loops�

The type of the loop is detected by checking the header and the last node of the loop�
The loop �B���B��� has no conditional check on its header node� but the last node of the
loop tests whether the loop should be executed again or not� thus� this is a post�tested
loop� such as a do��while�� in C� or a repeat��until�� in Modula�� The subgraph that
represents this loop can be logically transformed into the subgraph of Figure ���� where the
loop subgraph was replaced by one node that holds all the intermediate code instructions�
as well as information on the type of loop�

The loop �B���B�� has a conditional header node that determines whether the loop is
executed or not� The last node of this loop is a ��way node that transfers control back

��� Control Flow Analysis

�

loc	 � loc	 � �
printf ������� loc�� loc	�

�
do �� start of loop ��

�

while �loc	 � ��

B��B��

Figure ���� Post�tested Loop

to the header of the loop� This loop is clearly a pre�tested loop� such as a while�� loop
in a variety of languages� The subgraph of this loop can be logically transformed into the
subgraph of Figure ���� where the loop subgraph has been replaced with the one node that
holds all information on the loop and its instructions�

�

�

loc	 � loc	 � �
printf ������� loc�� loc	�

while �loc	 � ��

do �� start of loop ��

B��B����B��

loc	 � loc�
while �loc� � ���

loc� � loc� � �
end while

Figure ���� Pre�tested Loop

����� Structuring Conditionals

The �way conditional node B branches control to node B� if the condition
�loc� � �� �	 loc is true� otherwise it branches to node B�� Both these nodes are
followed by the node B�� in other words� the conditional branch that started at node B is

nished at node B�� This graph is clearly an if��then��else structure� and can be logi�
cally transformed into the subgraph of Figure ���� where the node represents basic blocks
B� B�� and B�� Note that all instructions before the conditional jump that belong to the
same basic block are not modi
ed�

The �way conditional node B� transfers control to node B� if the condition loc� �	 loc

is true� otherwise it transfers control to node B� From out previous example� node B
has been merged with nodes B� and B�� and transformed into an equivalent node with an
out�edge to node B�� thus� there is a path from node B � B�� Since B� is one of the
target branch nodes of the conditional at node B�� and it is reached by the other branch of
the conditional� this �way node represents a single branch conditional �i�e� an if��then��
This subgraph can be transformed into the node of Figure ���� where the condition at node
B� has been negated since the false branch is the single branch that forms part of the if�

��� Graph Structuring ��

�

�

loc� � loc� � loc�
if ��loc� � 	� �� loc�� then

else

B�

loc� � loc� �� �

loc� � loc� �� �

end if

B	��B�

Figure ���� �way Conditional Branching

�

�
loc� � �
loc� � loc� � �
if �loc� � loc�� then

loc� � loc� � loc�
if ��loc� � 	� �� loc�� then

B���B�

else
loc� � loc� �� �

loc� � loc� �� �

end if
end if

B�

Figure ���� Single Branch Conditional

The �way conditional nodes B� and B	 are not trivially structured� since� if node B	 is
considered the head of an if��then��else
nishing at node B��� and node B� is consid�
ered head of an if��then� we do not enter the subgraph headed by B	 at its entry point�
but in one of the clauses of the conditional branch� If we structure node B�
rst as an
if��then� then node B	 branches out of the subgraph headed at B� through another node
other than the exit node B�� thus� the graph cannot be structured with the if��then� and
if��then��else structures� But since both B� and B	 only have a conditional branch
instruction� these two conditions could be merged into a compound conditional in the fol�
lowing way� node B� is reached whenever the condition in node B� is true� or when the
condition at B� is false and the condition at B	 is false as well� Node B�� is reached
whenever the condition at node B� is false and the one at B	 is true� or by a path from
node B�� This means that node B� is reached whenever the condition at node B� is true
or the condition at node B	 is false� and the
nal end node is basic block B��� The
nal
compound condition is shown in Figure ���� along with the transformed subgraph�

��� Control Flow Analysis

�

�

if ��loc� � loc�� or ��loc� � 	� � loc��� then
loc� � loc� � loc� � ��

B���B�

loc� � loc� � 	
end if

B��

Figure ���� Compound Conditional Branch

��� Control Flow Analysis

Information on the control structures of a program is available through control �ow analysis
of the program�s graph� Information is collected in the di�erent nodes of the graph� whether
they belong to a loop and�or conditional� or are not part of any structure� This section
de
nes control �ow terminology available in the literature� for more information refer to
�All�� Tar�� Tar��� HU��� Hec��� ASU	�b��

����� Control Flow Analysis De�nitions

The following de
nitions de
ne basic concepts used in control �ow analysis� These
de
nitions make use of a directed graph G � �N�E� h��

De�nition 		 A path from n� to nv� n�� nv � N � represented n� � nv� is a sequence of
edges �n�� n��� �n�� n��� � � � � �nv��� nv� such that �ni� ni��� � E�	 �
 i � v� v � ��

De�nition 	
 A closed path or cycle is a path n� � nv where n� � nv�

De�nition 	� The successors of ni � N are fnj � N j ni � njg �i�e� all nodes reachable
from ni��
The immediate successors of ni � N are fnj � N j �ni� nj� � Eg�

De�nition 	� The predecessors of nj � N are fni � N j ni � njg �i�e� all nodes that
reach nj��
The immediate predecessors of nj � N are fni � N j �ni� nj� � Eg�

De�nition 	� A node ni � N back dominates or predominates a node nk � N if ni
is on every path h� nk� It is said that ni dominates nk�

De�nition 	 A node ni � N immediately back dominates nk � N if �nj � nj back
dominates nk �ni back dominates nj �i�e� ni is the closest back dominator to nk�� It is said
that ni is the immediate dominator of nk�

De�nition
� A strongly connected region �SCR� is a subgraph S � �NS� ES � hS� such
that 	ni� nj � NS � �ni � nj � nj � ni�

��� Control Flow Analysis ���

De�nition
� A strongly connected component of G is a subgraph S � �NS � ES� hS�
such that

� S is a strongly connected region�

� �S� strongly connected region of G � S � S��

De�nition
� Depth �rst search �DFS� is a traversal method that selects edges to
traverse emanating from the most recently visited node which still has unvisited edges�

A DFS algorithm de
nes a partial ordering of the nodes of G� The reverse postorder is the
numbering of nodes during their last visit� the numbering starts with the maximumnumber
of nodes in the graph� and
nishes at �� Throughout this chapter� all numbered graphs use
the reverse postorder numbering scheme�

De�nition
� A depth �rst spanning tree �DFST� of a �ow graph G is a directed�
rooted� ordered spanning tree of G grown by a DFS algorithm� A DFST T can partition the
edges in G into three sets�

	� Back edges � f�v�w� � w � v � Tg�

�� Forward edges � f�v�w� � v� w � Tg�

�� Cross edges � f�v�w� � � �v� w or w� v� and w
 v in preorderg�

����� Relations

De�nition
	 Let R be a relation on a set S�
Then xRy denotes �x� y� � R�

De�nition

 Let R be a relation on a set S�
Then

� the re�exive closure of R is R� � R � f�x� x�jx � Sg

� the transitive closure of R is R� � R� � R� � � � �� where R� � R and Ri � RRi��

for i �

� the re�exive transitive closure of R is R� � R� � R�

� the completion of R is %R � f�x� y� � S � S jxR�y � � z � S � yRzg�

De�nition
� Let R be a relation on a set S�
Then �S�R� is �nite Church�Rosser �fcr� if and only if�

	� R is �nite� i�e� 	 p � S � � kp� pRiq � i
 kp�

�� %R is a function� i�e� p %Rq � p %Rr� q � r�

����� Interval Theory

An interval is a graph theoretic construct de
ned by J�Cocke in �Coc���� and widely used by
F�Allen for control �ow analysis�All��� AC�� and data �ow analysis�All�� All��� AC����
The following sections summarize interval theory concepts�

��� Control Flow Analysis

Intervals

De�nition
� Given a node h� an interval I�h� is the maximal� single�entry subgraph in
which h is the only entry node and in which all closed paths contain h� The unique interval
node h is called the interval head or simply the header node�

By selecting the correct set of header nodes� G can be partitioned into a unique set of
disjoint intervals I � fI�h��� I�h��� � � � � I�hn�g� for some n � �� The algorithm to
nd the
unique set of intervals of a graph is described in Figure ��	� This algorithm makes use of
the following variables� H �set of header nodes�� I�i� �set of nodes of interval i�� and I �list
of intervals of the graph G�� as well as the function immedPred�n� which returns the next
immediate predecessor of n�

procedure intervals �G � �N�E� h��
�	 Pre
 G is a graph�
	 Post
 the intervals of G are contained in the list I� 	�

I
� fg�
H
� fhg�
for �all unprocessed n � H� do

I�n�
� fng�
repeat

I�n�
� I�n� � fm � N j �p � immedPred�m� � p � I�n�g�
until

no more nodes can be added to I�n��
H
� H � fm � N jm �� H �m �� I�n� � �	 p � immedPred�m� � p � I�n��g�
I
� I � I�n��

end for
end procedure

Figure ��	� Interval Algorithm

The example in Figure ��� shows a graph G with its intervals in dotted boxes� This graph
has two intervals� I��� and I��� Interval I�� contains a loop� the extent of this loop is given
by the back�edge �����

De�nition
� The interval order is de�ned as the order of nodes in an interval list�
given by the intervals algorithm of Figure ����

Some interval properties�

�� The header node back dominates each node in the interval�

� Each strongly connected region in the interval must contain the header node�

��� Control Flow Analysis ���

��

� � �

�
m

m
m
m
m

m�
�

�

�

��

�

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

G

� � � � � � � � � � � � �

� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

��
�

	

�

�

�

�

I�	�

I���

I��� � f�g

I�	� � f	��������g

Figure ���� Intervals of a Graph

�� The interval order is such that if all nodes are processed in the order given� then all
interval predecessors of a node reachable along loop free paths from the header will
have been processed before the given node�

De�nition
 A latching node is any node in the interval which has the header node as
an immediate successor�

Derived Sequence Construction

The derived sequence of graphs� G� � � �Gn� was described by F�Allen�All��� All�� based
on the intervals of graph G� The construction of graphs is an iterative method that col�
lapses intervals into nodes� G is the
rst order graph� represented G�� The second order
graph� G�� is derived from G� by collapsing each interval in G� into a node� The immediate
predecessors of the collapsed node are the immediate predecessors of the original header
node which are not part of the interval� The immediate successors are all the immediate�
non�interval successors of the original exit nodes� Intervals for G� are computed with the
interval algorithm� and the graph construction process is repeated until a limit �ow graph
Gn is reached� Gn has the property of being a trivial graph �i�e� single node� or an irre�
ducible graph� Figure ���� describes this algorithm�

De�nition �� The n�th order graph or limit �ow graph� Gn� of a graph G is de�ned
as the graph Gi��� i � �� constructed by the derivedSequence algorithm of Figure ��	
� such
that Gi�� � Gi�

De�nition �� A graph G is reducible if its n�th order graph Gn is trivial�

��	 Control Flow Analysis

procedure derivedSequence �G � �N�E�h��
�	 Pre
 G is a graph�
	 Post
 the derived sequence of G� G� � � �Gn� n
 � has been constructed� 	�

G� � G�
I� � intervals�G���
i � �
repeat �	 Construction of Gi 	�

N i � fni j I i���ni��� � Ii��g

�n � N i � p � immedPred�n�� �	m � N i�� �m � I i���m��
p � immedPred�m�� p �� I i���m���

�hij � h
i
k� � Ei � �	n�m� hi��j � hi��k � N i�� � hi��j � I i���hi��j ��

hi��
k

� I i���hi��
k

� �m � I i���hi��j � � n � I i���hi��
k

� � �m�n� � Ei���

i � i � ��
until

Gi �� Gi���
end procedure

Figure ����� Derived Sequence Algorithm

The construction of the derived sequence is illustrated in Figure ����� The graph G� is the
initial control �ow graph G� G� has intervals� previously described in Figure ���� Graph
G� represents the intervals of G� as nodes� G� has a loop in its unique interval� This loop
represents the loop extended by the back�edge ������ Finally� G� has no loops and is a trivial
graph�

��

�

��

� ��

� ��
�

j
j
j
j
j
j

�	��
�	�� �	���

�

�

�

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
		

		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	
	
	

	
	
	
	
	

�

�

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		
		
		
		
		
		
		
	

		
		
		
		
		
		
		
	�

�

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

		
		
	
	
		

		
	
	
		
	
	�

�

�

�

�

�

G�

I���

I���

���

� ���

I���

I���

G�

G�

Figure ����� Derived Sequence of a Graph

��	 High�Level Language Control Structures ��

Implementation Considerations

To compute the intervals of a graph G� G needs to be de
ned in terms of its predecessors
and successors �i�e� an adjacency�type graph representation�� With the aid of extra data
structures� Hecht presented an optimized algorithm to
nd intervals�Hec���� of complexity
O�e�� j E j� e�

����	 Irreducible Flow Graphs

An irreducible �ow graph is a graph such that its n�th order graph is not a trivial graph
�by interval reduction�� Irreducible �ow graphs are characterized by the existence of a
forbidden canonical irreducible graph �HU�� HU��� Hec���� The absence of this graph in
a �ow graph is enough for the graph to be reducible� The canonical irreducible graph is
shown in Figure ����

m
m
�

��Rm �
���
�

�

�

Figure ���� Canonical Irreducible Graph

Theorem � A �ow graph is irreducible if and only if it has a subgraph of the form canonical
irreducible graph�

��� High�Level Language Control Structures

Di�erent high�level languages use di�erent control structures� but in general� no high�level
language uses all di�erent available control structures� This section illustrates di�erent
control structures� gives a classi
cation� and analyses the structures available in commonly
used high�level languages such as C� Pascal� and Modula��

��	�� Control Structures � Classi�cation

Control structures have been classi
ed into di�erent classes according to the complexity of
the class� An initial classi
cation was provided by Kosaraju in �Kos���� and was used to
determine which classes were reducible to which other classes� This classi
cation was ex�
panded by Ledgard and Marcotty in �LM���� and was used to present a hierarchy of classes
of control structures under semantical reducibility�

Figure ���� shows all the di�erent control structures that are under consideration in this
classi
cation� these structures are�

�� Action� a single basic block node is an action�

� Composition� a sequence of structures is a composition�

��� Control Flow Analysis

��

�

��

�

�

����

�

��

�

��
�

�
��

m
m

m

m
m

m
m m

m m

m
m

m
m
m m
m

m
m

m
m
m

m

m
m

m
m
m
m
m

m
m
m

m
m

m

�

�
��

Z
ZZ�

�
��

Q
Q

QQs

�

�
�

�

�

�

�

�

��
�

�

Goto

�
���

�

�
�

��R

�
�

��

�

��

�

�

�

�

�

�

�
�

�R
w

�

�

�

�

�

�

�
�

�R ���
�

�

�

�

�

�
�

���
w�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Pre�tested loop

Conditional

Action

Composition

Single branch conditional

n�way branch conditional

Post�tested loop

Multiexit loop

Endless loop

Multilevel exit

Multilevel cycle

Figure ����� High�level Control Structures

�� Conditional� a structure of the form if p then s� else s�� where p is a predicate
and s��s� are structures is a conditional structure�

�� Pre�tested loop� a loop of the form while p do s� where p is a predicate and s is a
structure� is a pre�tested loop structure�

�� Single branch conditional� a conditional of the form if p then s� where p is a
predicate and s is a structure� is a single branch conditional structure�

�� n�way conditional� a conditional of the form

case p of

� � s�

� � s�

���

n � sn

��	 High�Level Language Control Structures ���

end case

where p is a predicate and s���sn are structures� is an n�way conditional structure�

�� Post�tested loop� a loop of the form repeat s until p� where s is a structure and p

is a predicate� is a post�tested loop structure�

	� Multiexit loop� a loop of the form

while p� do

s�

if p� then exit

s�

if p� then exit

���

if pn then exit

sn

end while

where s���sn are structures and p���pn are predicates� is a multiexit loop structure�
Each exit statement branches out of the loop to the
rst statement�basic block after
the loop�

�� Endless loop� a loop of the form loop s end� where s is a structure� is an endless loop�

��� Multilevel exit� an exit�i� statement causes the termination of i enclosing endless
loops�

��� Multilevel cycle� a cycle�i� statement causes the i�th enclosing endless loop to be
re�executed�

�� Goto� a goto statement transfers control to any other basic block� regardless of unique
entrance conditions�

Based on these � di�erent structures� control structures are classi
ed into the following
classes�

� D structures� D for Dijkstra� D � f������g

� D� structures� extension of D structures� D� � f������������g

� BJn structures� BJ for B$ohm and Jacopini� n for the maximum number of predicates
in a multiexit loop� BJn � f�����	g

� REn structures� RE for Repeat�End� n for the maximum number of exit levels�
REn � f���������g

� RECn structures� REC for Repeat�End with cycle�i� structures� n for the number
of levels� RECn � f������������g

� DREn structures� DRE for Repeat�End and Do�while loops� n for the maximum
number of enclosing levels to exit� DREn � f�����������g

��� Control Flow Analysis

� DRECn structures� DREC for Repeat�End� Do�while� and cycle�i� structures� n for
the maximum number of enclosing endless loops� DRECn � f��������������g

� GPn structures� any structure that has one�in� one�out substructures that have at
most n di�erent predicates� GPn � f������g

� L structures� any well�formed structure� There are no restrictions on the number of
predicates� actions� and transfers of control� therefore� goto statements are allowed�
L � f����g

De�nition �� Let s	 and s� be two structures� then s	 is a semantical conversion of s�
if and only if

� For every input� s� computes the same function as s	�

� The primitive actions and predicates of s� are precisely those of s	�

In other words� no new semantics such as variables� actions� or predicates� are allowed by
this conversion�

Based on semantical conversion� the classes of control structures form a hierarchy� as shown
in Figure ����� The classes higher up in the hierarchy are a semantical conversion of the
lower classes�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

D�D��BJ�

REC�

RE��REC�� DRE��

GP�

DREC�� GP�� L

REn � RECn

RE� �

BJ�

� DRECnDREn

�DRE� DREC�

BJ	

�

Figure ����� Control Structures Classes Hierarchy

��	�� Control Structures in �rd Generation Languages

In this section� di�erent high�level languages are analysed and classi
ed in terms of their
control structures� The selected languages are used in a variety of applications� including
systems programming� numerical or scienti
cal applications� and multipurpose applications�
these languages are� Modula�� Pascal� C� Fortran� and Ada�

��	 High�Level Language Control Structures ��

Modula� �Wir	�� PLA��� does not allow for the use of goto statements� therefore� the
control �ow graphs generated by this language are structured and reducible� Modula� has
all D��type structures� �way conditionals �IF p THEN s� �ELSE s���� n�way conditional
�CASE p OF ��� END� pre�tested loop �WHILE p DO�� post�tested loop �REPEAT s UNTIL p��
and in
nite loop �LOOP s END�� An endless loop can be terminated by one or more EXIT
statements within the statement sequence body of the loop� This construct can be used
to simulate other loop structures� such as a multiexit loop with n predicates �BJn struc�
ture�� An EXIT statement terminates the execution of the immediately enclosing endless
loop statement� and the execution resumes at the statement following the end of the loop�
If an EXIT occurs within a pre�tested or post�tested loop nested within an endless loop� both
the inner loop and enclosing endless loop are terminated� therefore� an EXIT statement is
equivalent to an exit��� statement� and belongs to the RE� class of structures�

Pascal �Coo	�� is not as strict as Modula�� in the sense that it allows goto statements to be
used� All D��type structures are allowed� �way conditionals �if p then s� �else s����
n�way conditional �case p of ��� end�� pre�tested loop �while p do�� post�tested loop
�repeat s until p�� and the endless loop is simulated by a while�� with a true condition
�while �True� do�� Gotos can be used to simulate multiexit and multilevel loops� but can
also be used in an unstructured way� to enter in the middle of a structure� therefore� L class
structures are permitted in this language�

C �KR		� allows for structured and unstructured transfer of control� D� structures are
represented by the following statements� �way conditional �if �p� s� �else s���� n�
way conditional �switch �p� ������� pre�tested loop �while �p� �s��� post�tested loop
�do s while �p��� and endless loop �for ����� or while ��� �s��� � level exit of control
is allowed by the use of break statements� and � level cycle transfer of control is allowed by
the use of the continue statement� therefore� C contains structures of the RE� and REC�
classes� The use of goto statements can model any structure from the DRECn class� but
can also produce unstructured graphs� therefore C allows for L class structures�

Fortran �Col	�� has di�erent types of conditionals which include� �way conditional
�IF �p� s��s��� arithmetic if or ��way conditional �IF �p� s��s��s��� and computed
goto statements or n�way conditionals �GOTO �s��s������sn� p�� Pre�tested� post�tested
and endless loops are all simulated by use of the DO statement� therefore� all D��type struc�
tures are allowed in Fortran� Finally� goto statements are allowed� producing structured or
unstructured transfers of control� allowing for L type structures�

Ada �DoD	�� allows most D��type structures� including� �way conditionals �if p then s�

�else s���� n�way conditional �case p is ��� end�� pre�tested loop �while p and for

loops�� and endless loop �loop s end loop�� Ada also allows the use of the exit statements
to exit from within named endless loops� therefore� several nested loops can be terminated
with this instruction �i�e� REn class type structure�� Goto statements are allowed in a
restricted way� they can transfer control only to a statement of an enclosing sequence of
statements� but not the reverse� Also� it is prohibited to transfer control into the alterna�
tives of a case statement� or an if��then��else statement� These restrictions on the use
of gotos makes them simulate multilevel exits and multilevel continues� but do not permit
unstructured transfers of control� therefore� up to DRECn�type structures can be built in

�	� Control Flow Analysis

this language�

Figure ���� summarizes the di�erent types of classes of structures available in the set of
distinguished languages� It must be pointed out that all of these languages make use of
D��type structures� plus one or more structures that belong to di�erent types of classes�
Unstructured languages allow for the unstructured use of goto� which is the case of Pascal
and Fortran� Structured uses of goto� such as in Ada� permit the construction of structured
control �ow graphs� since up to DRECn�type structures can be simulated by these gotos�

Language Control Structure Classi
cation
Modula� D� ! BJn ! RE�
Pascal D� ! L
C D� ! BJn ! DREC� ! L
Fortran D� ! L
Ada D� ! DRECn

Figure ����� Classes of Control Structures in High�Level Languages

��	�� Generic Set of Control Structures

In order to structure a graph� a set of generic control structures needs to be selected� This
set must be general enough to cater for commonly used structures in a variety of languages�
From the review of some �rd generation languages in the previous section� it is clear that
most languages have D� class structures� plus some type of structured or unstructured
transfer of control �i�e� multilevel exits or gotos�� Structures from the REn� RECn� DREn�
and DRECn classes can all be simulated by the use of structured transfers of control via a
goto statement� Since most of the languages allow the use of goto� and not all languages
have the same multilevel exit or multilevel continue structures� goto is a better choice of a
generic construct than exit�i� or cycle�i�� It is therefore desirable to structure a control
�ow graph using the following set of generic structures�

� Action

� Composition

� Conditional

� Pre�tested loop

� Single branching conditional

� n�way conditional

� Post�tested loop

� Endless loop

� Goto

In other words� the generic set of control structures has all D� and L class structures�

��
 Structured and Unstructured Graphs �	�

��� Structured and Unstructured Graphs

A structured control �ow graph is a graph generated from programs that use structures
of up to the DRECn class� i�e� a graph that is decomposable into subgraphs with one
entry and one or more exits� Languages that allow the use of goto can still generate
structured graphs� if the gotos are used to transfer control in a structured way �i�e� to
transfer control to the start or the end of a structure�� Unstructured graphs are generated
by the unstructured transfer of control of goto statements� that is� a transfer of control
in the middle of a structured graph� which breaks the previously structured graph into an
unstructured one since there is more than one entry into this subgraph� Unstructuredness
can also be introduced by the optimization phase of the compiler when code motion is
performed �i�e� code is moved��

��
�� Loops

A loop is a strongly connected region in which there is a path between any two nodes of
the directed subgraph� This means that there must be at least one back�edge to the loop�s
header node�

A structured loop is a subgraph that has one entry point� one back�edge� and possibly
one or more exit points that transfer control to the same node� Structured loops include all
natural loops �pre�tested and post�tested loops�� endless loops� and multiexit loops� These
loops are shown in Figure �����

��
��

��m
m

m
m

m
mm
m

m
m

�

�

�

�

�

�

��
�

�

Post�tested loop

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
In�nite loopPre�tested loop

Multiexit loop

Figure ����� Structured Loops

An unstructured loop is a subgraph that has one or more back�edges� one or more entry
points� and one or more exit points to di�erent nodes� Figure ���� illustrates four di�erent
types of unstructured loops�

� Multientry loop� a loop with two or more entry points�

� Parallel loop� a loop with two or more back�edges to the same header node�

� Overlapping loops� two loops that overlap in the same strongly connected region�

� Multiexit loop� a loop with two or more exits to di�erent nodes�

�	� Control Flow Analysis

�

�����

�

����

�

�� �

�

��
m
n
n n

n
n

n
n
n
nn

n
n
n

��

n
Multiexit

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�R

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Multientry

Parallel

Overlapping

Figure ����� Sample Unstructured Loops

The follow node of a structured or unstructured loop is the
rst node that is reached from
the exit of the loop� In the case of unstructured loops� one node is considered the loop exit
node� and the
rst node that follows it is the follow node of the loop�

��
�� Conditionals

A structured ��way conditional is a directed subgraph with a �way conditional header
node� one entry point� two or more branch nodes� and a common end node that is reached
by both branch nodes� This
nal common end node is referred to as the follow node� and
has the property of being immediately dominated by the header node�

In an if��then conditional� one of the two branch nodes of the header node is the follow
node of the subgraph� In an if��then��else conditional� neither branch node is the follow
node� but they both converge to a common end node� Figure ���	 shows these two generic
constructs� with the values of the out�edges of the header node� true or false� In the case of
an if��then� either the true or the false edge leads to the follow node� thus� there are two
di�erent graphs to represent such a structure� whereas in the case of an if��then��else�
the graph representation is unique�

In a similar way� a structured n�way conditional is a directed subgraph with one n�way
entry header node �i�e� n successor nodes from the header node�� and a common end node
that is reached by the n successor nodes� This common end node is referred to as the follow
node� and has the property of being dominated by the header node of the structure� A
sample ��way conditional is shown in Figure �����

Unstructured ��way conditionals are �way node header subgraphs� with two or more
entries into the branches of the header node� or two or more exits from branches of the
header node� These graphs are represented in the abnormal selection path graph� shown in
Figure ��� �a�� It is known from the graph structure that an if��then��else subgraph
can start at nodes � and � generating the two subgraphs in Figure ��� �b� and �c�� The

��
 Structured and Unstructured Graphs �	�

�

�n
n
n

n
n
n

n
n

n
n

� ��

��

�

T

� �

Z
ZZ�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

F

T F

T F

Figure ���	� Structured �way Conditionals

�	���	�� �	�� �	��

�	��

�	����������
�

���
S

SSw

HHHHHHj

Q
Q

Q
Q

QQs

J
J
J�

�
�

��

�
�

�
�

���

Figure ����� Structured ��way Conditional

graph �b� assumes a �way conditional starting at node � with an abnormal entry at node
�� The graph �c� assumes a �way conditional starting at node �� with an abnormal exit
from node �

n
n n
n

n

n
n n
n

n
n
n
n

�
��

Z
ZZ�

�

�
��

�
��

Z
ZZ�

Z
ZZ�

Z
ZZ�

�

�
��

Z
ZZ�

n

�
��

�

ZZ�Z
ZZ�

�

�
��

Z
ZZ�

Z
ZZ�

�
��

ZZ�

�

	

�

�

�

�

�a�

�c�

�

	�

�

�b�

	

��

Figure ���� Abnormal Selection Path

In a similar way� unstructured n�way conditionals allow for two or more entries or exits
to�from one or more branches of the n�way header node� Figure ��� shows four di�erent
cases of unstructured ��way graphs� graph �a� has an abnormal forward out�edge from one

�		 Control Flow Analysis

of the branches� graph �b� has an abnormal backward out�edge from one of the branches�
graph �c� has an abnormal forward in�edge into one of the branches� and graph �d� has an
abnormal backward in�edge into one of the branches�

��

�

�

�

n
nn

n
n

n
n
n

n nn
n

n
n nn
n

n n
nn

n
n

n�
��

Z
ZZ�

�

�
��

�

Z
ZZ�

�d�

�

�

�

�

�

�

�

�
��

Z
ZZ�

�
��

�

�
Z

ZZ�

�

�

�

�

�

�
��

Z
ZZ�

�
��

�

�
Z

ZZ�

�

�

�

�

�

�
��

Z
ZZ�

�

�
��

Z
ZZ�

�

�

�

�

�

�

�

�a� �b� �c�

Figure ���� Unstructured ��way Conditionals

��
�� Structured Graphs and Reducibility

A structured graph is one that is composed of structured subgraphs that belong to the class
of graphs generated by DRECn structures� An informal demonstration is given to prove
that all structured graphs of the class DRECn are reducible� Consider the informal graph
grammar given in Figure ��� There are �� production rules� each de
ning a di�erent
structured subgraph S� Each production rule indicates that a structured subgraph can
be generated by replacing a node S with the associated right�hand side subgraph of the
production�

Theorem � The class DRECn of graphs is reducible�
Demonstration� The class DRECn of graphs is de�ned by the informal graph grammar of
Figure ����� All the subgraphs in the right�hand side of the productions have the common
property of having one entry point� and one or more exit points to a common target end
point� in this way� transfers of control are done in a structured way� By theorem 	� it is
known that a graph is irreducible if and only if it has a subgraph of the form of the canonical
irreducible graph �see Figure ��	��� This canonical irreducible graph is composed of two
subgraphs� a conditional branching graph� and a loop� The former subgraph has one entry
point� and the latter subgraph has two �or more� entry points� which is what makes the
graph irreducible� Since none of the productions of the graph grammar generate subgraphs
that have more than one entry point� this graph grammar cannot generate an irreducible
graph� thus� the graphs that belong to the DRECn class are reducible�

��� Structuring Algorithms

In decompilation� the aim of a structuring algorithm is to determine the underlying control
structures of an arbitrary graph� thus converting it into a functional and semantical

��� Structuring Algorithms �	

��

�

��

�

��

�

��

�

��
�

��
�

�
��

m
m
m

m
m

m
m
m
m
m

m
m

m
m
m

m

m
m

m

m
m

m
m
m m
m

m

m
m m

m

m

m

m

m

m

m m

m

m

m
m
m

m
m

m

m
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
���

�

�
�

��R

�
�

��

�

��

�

�

�

�

�

�

�
�

�R
w

�

�

�

�

�

�

�
�

�R ���
�

�

�

�

�

�

��

�
�

���

S

w�
�

�

�

�

�

�
��

Z
ZZ�

�
��

Q
Q

QQs

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

HHj

S

S

S

S

S

S

S

S

S

S

S
�

	

�

�

�

�

�

�

��

��

S

S

S

S S

S

S

S

S

S

S

S

S S S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Figure ��� Graph Grammar for the Class of Structures DRECn

equivalent graph� Arbitrary graph stands for any control �ow graph� reducible or irreducible�
from a structured or unstructured language� Since it is not known what language the initial
program was written in� and what compiler was used �e�g� what optimizations were turned
on�� the use of goto jumps must be allowed in case the graph cannot be structured into a
set of generic high�level structures� The set of generic control structures of Section ����� is
the one chosen for the structuring algorithm presented in this section�

����� Structuring Loops

In order to structure loops� a loop in terms of a graph representation needs to be de
ned�
This representation must be able to not only determine the extent of a loop� but also pro�
vide a nesting order for the loops� As pointed out by Hecht in �Hec���� the representation
of a loop by means of cycles is too
ne a representation since loops are not necessarily prop�
erly nested or disjoint� The use of strongly connected components as loops is too coarse a
representation as there is no nesting order� The use of strongly connected regions does not

�	� Control Flow Analysis

provide a unique cover of the graph� and does not cover the entire graph� Finally� the use
of intervals does provide a representation that satis
es the abovementioned conditions� one
loop per interval� and a nesting order provided by the derived sequence of graphs�

�

�

�
��

����

����

���� ����

����

����

����

����

����

����

����

����
����

����

����

�

�

�
��

Z
ZZ�

�
��

Z
ZZ�

�

�����
HHHHj

�
���

�

�
�R

B
B
B
B
B
BBN

�
�
�

�
�

�
��

�

�

�

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� � � � � � � � � � � � �

� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I� � f����g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� � � � � � � � � � � � � � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B��

B�

B	

B� B�

B�

B�

B�

B

B�

B��

B��

B��

B��

B�	

I	

I�

I�

�

	

� �

�

�

��

�	

��

��

��

�

�

��

I� � f����g

I	 � f����������g

Figure ���� Intervals of the Control Flow Graph of Figure ��

Given an interval I�hj� with header hj� there is a loop rooted at hj if there is a back�edge
to the header node hj from a latching node nk � I�hj�� Consider the graph in Figure ����
which is the same graph from Figure �� without intermediate instruction information� and
with intervals delimitered by dotted lines� There are � intervals� I� rooted at basic block
B�� I� rooted at node B�� and I� rooted at node B���

In this graph� interval I� contains the loop �B���B��� in its entirety� and interval I� contains
the header of the loop �B���B��� but its latching node is in interval I�� If each of the inter�
vals are collapsed into individual nodes� and the intervals of that new graph are found� the
loop that was between intervals I� and I� must now belong to the same interval� Consider

��� Structuring Algorithms �	�

the derived sequence of graphs G� � � �G� in Figure ���� In graph G�� the loop between
nodes I� and I� is in interval I� in its entirety� This loop represents the corresponding loop
of nodes �B���B�� in the initial graph� It is noted that there are no more loops in these
graphs� and that the initial graph is reducible since the trivial graph G� was derived by this
process� It is noted that the length of the derived sequence is proportional to the maximum
depth of nested loops in the initial graph�

I� � f�����g

m�I�
G�

�
��

m
m
m

m
m

�

�

�
I� � f����g

� � � � � � � � � � � �

� � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

I� � f�����g

� � � � � � � � � � � � �

� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � �

� � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

I�

I	

I�

I�

I�

G	

I�

I�
I�

G�

Figure ���� Derived Sequence of Graphs G� � � � G�

Once a loop has been found� the type of loop �e�g� pre�tested� post�tested� endless� is deter�
mined according to the type of header and latching nodes� Also� the nodes that belong to
the loop are �agged as being so� in order to prevent nodes from belonging to two di�erent
loops� such as in overlapping� or multientry loops� These methods are explained in the
following sections� for now we assume there are two procedures that determine the type of
the loop� and mark the nodes that belong to that loop�

Given a control �ow graph G � G� with interval information� the derived sequence of
graphs G�� � � � � Gn of G� and the set of intervals of these graphs� I� � � �In� an algorithm
to
nd loops is as follows� each header of an interval in G� is checked for having a back�
edge from a latching node that belong to the same interval� If this happens� a loop has
been found� so its type is determined� and the nodes that belong to it are marked� Next�
the intervals of G�� I� are checked for loops� and the process is repeated until intervals
in In have been checked� Whenever there is a potential loop �i�e� a header of an interval
that has a predecessor with a back�edge� that has its header or latching node marked as
belonging to another loop� the loop is disregarded as it belongs to an unstructured loop�
These loops always generate goto jumps during code generation� In this algorithm no goto
jumps and target labels are determined� The complete algorithm is given in Figure ����
This algorithm
nds the loops in the appropriate nesting level� from innermost to outermost
loop�

Finding the Nodes that Belong to a Loop

Given a loop induced by �y� x�� y � I�x�� it is noted that the two di�erent loops that are
part of the sample program in Figure ��� satisfy the following condition�

	n � loop�y� x� � n � fx � � � yg

�	� Control Flow Analysis

procedure loopStruct �G � �N�E� h��
�	 Pre
 G� � � �Gn has been constructed�
	 I� � � �In has been determined�
	 Post
 all nodes of G that belong to a loop are marked�
	 all loop header nodes have information on the type of loop and the latching node� 	�

for �Gi
� G� � � �Gn�
for �I i�hj�
� I��h�� � � � I

m�hm��
if ��	x � N i � �x� hj� � Ei�� �inLoop�x� �� False��
for �all n � loop �x� hj��
inLoop�n� � True

end for
loopType�hj� � �ndLoopType ��x� hj���
loopFollow�hj� � �ndLoopFollow ��x� hj���

end if
end for

end for
end procedure

Figure ���� Loop Structuring Algorithm

In other words� the loop is formed of all nodes that are between x and y in terms of node
numbering� Unfortunately� it is not that simple to determine the nodes that belong to a
loop� Consider the multiexit graphs in Figure ���� where each loop has one abnormal exit�
and each di�erent graph has a di�erent type of edge being used in the underlying DFST�
As can be seen� loops with forward edges� back edges� or cross edges satisfy the above
mentioned condition� The graph with the tree edge includes more nodes though� as nodes �
and � are not really part of the loop� but have a number between nodes and � �the bound
of the loop�� In this case� an extra condition is needed to be satis
ed� and that is� that the
nodes belong to the same interval� since the interval header �i�e� x� dominates all nodes of
the interval� and in a loop� the loop header node dominates all nodes of the loop� If a node
belongs to a di�erent interval� it is not dominated by the loop header node� thus it cannot
belong to the same loop� In other words� the following condition needs to be satis
ed�

	n � loop�y� x� � n � I�x�

Given an interval I�x� with a loop induced by �y� x�� y � I�x�� the nodes that belong to
this loop satisfy two conditions� In other words� a node n belongs to the loop induced by
�y� x� if it belongs to the same interval �i�e� it is dominated by x�� and its order �i�e� reverse
postorder number� is greater than the header node and lesser than the latching node �i�e� it
is a node from the �middle� of the loop�� These conditions can be simpli
ed in the following
expression�

n � loop�y� x�� n � �I�x� � fx � � � yg�

��� Structuring Algorithms �	

��

��

�

��

��

�

�
m
m
m
m
m

m

m
m

m

m

m m

m
m
m
m
mm

m
m
m
m
m

m

�
�
�
�
���

�
�R

�

�

�

�
A
A
A
A
AU

�
���

�

�

�

�

�

�

�
��

�
�

�

�

�

�

�

�

�

�

�

�

�

�a� �d��b� �c�

tree�edge forward�edgecross�edge back�edge

back�edge

loop back�edge

�

�

�
�

��

	

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

	

Figure ���� Multiexit Loops � � Cases

The loops from Figure ��� have the following nodes� loop ���	� has only those two nodes�
and loop ������ has all nodes between � and �� that belong to the interval I� �Figure ����
in G�� These nodes are as follows�

� Loop ���	� � f	��g

� Loop ������ � f�����g

The algorithm in Figure ���
nds all nodes that belong to a loop induced by a back�edge�
These nodes are marked by setting their loop head to the header of the loop� Note that
if an inner loop node has already been marked� it means that the node also belongs to a
nested loop� and thus� its loopHead
eld is not modi
ed� In this way� all nodes that belong
to a loop�s� are marked by the header node of the most nested loop they belong to�

Determining the Type of Loop

The type of a loop is determined by the header and latching nodes of the loop� In a pre�
tested loop� the �way header node determines whether the loop is executed or not� and
the ��way latching node transfers control back to the header node� A post�tested loop is
characterized by a �way latching node that branches back to the header of the loop or out
of the loop� and any type of header node� Finally� an endless loop has a ��way latching
node that transfers control back to the header node� and any type of header node�

The types of the two loops of Figure ��� are as follows� the loop ���	� has a �way latching
node and a call header node� thus� the loop is a post�tested loop �i�e� a repeat��until��
loop�� The loop ������ has a ��way latching node and a �way header node� thus� the loop
is a pre�tested loop �i�e� a while�� loop��

In this example� the repeat��until�� loop had a call header node� so there were no
problems in saying that this loop really is a post�tested loop� A problem arises when both

�
� Control Flow Analysis

procedure markNodesInLoop �G � �N�E� h�� �y� x��
�	 Pre
 �y� x� is a back�edge�
	 Post
 the nodes that belong to the loop �y� x� are marked� 	�

nodesInLoop � fxg

loopHead�x� � x

for �all nodes n � fx� � � � �yg�
if �n � I�x��

nodesInLoop � nodesInLoop �fng
if �loopHead�n� �� No Node�

loopHead�n� � x�
end if

end if
end for

end procedure

Figure ���� Algorithm to Mark all Nodes that belong to a Loop induced by �y� x�

the header and latching nodes are �way conditional nodes� since it is not known whether
one or both branches of the header �way node branch into the loop or out of the loop� i�e�
the loop would be an abnormal loop in the former case� and a post�tested loop in the latter
case� It is therefore necessary to check whether the nodes of the branches of the header
node belong to the loop or not� if they do not� the loop can be coded as a while�� loop
with an abnormal exit from the latching node� Figure ��	 gives an algorithm to determine
the type of loop based on the nodesInLoop set constructed in the algorithm of Figure ����

Finding the Loop Follow Node

The loop follow node is the
rst node that is reached after the loop is terminated� In the
case of natural loops� there is only one node that is reached after loop termination� but
in the case of multiexit and multilevel exit loops� there can be more than one exit� thus�
more than one node can be reached after the loop� Since the structuring algorithm only
structured natural loops� all multiexit loops are structured with one �real� exit� and one or
more abnormal exits� In the case of endless loops that have exits in the middle of the loop�
several nodes can be reached after the di�erent exits� It is the purpose of this algorithm to

nd only one follow node�

In a pre�tested loop� the follow node is the successor of the loop header that does not belong
to the loop� In a similar way� the follow node of a post�tested loop is the successor of the
loop latching node that does not belong to the loop� In endless loops there are no follow
nodes initially� as neither the header nor the latching node jump out of the loop� But since
an endless loop can have a jump out of the loop in the middle of the loop �e�g� a break in
C�� it can too have a follow node� Since the follow node is the
rst node that is reached
after the loop is ended� it is desirable to
nd the closest node that is reached from the loop

��� Structuring Algorithms �
�

procedure loopType �G � �N�E� h�� �y� x�� nodesInLoop�
�	 Pre
 �y� x� induces a loop�
	 nodesInLoop is the set of all nodes that belong to the loop �y� x��
	 Post
 loopType�x� has the type of loop induced by �y� x�� 	�

if �nodeType�y� �� �way�
if �nodeType�x� �� w�

if �outEdge�x��� � nodesInLoop � outEdge�x�� � nodesInLoop�
loopType�x� � Post Tested�

else
loopType�x� � Pre Tested�

end if
else

loopType�x� � Post Tested�
end if

else �	 ��way latching node 	�
if �nodeType�x� �� �way�

loopType�x� � Pre Tested�
else

loopType�x� � Endless�
end if

end if
end procedure

Figure ��	� Algorithm to Determine the Type of Loop

after an exit is performed� The closest node is the one with the smallest reverse postorder
numbering� i�e� the one that is closest to the loop �in numbering order�� Any other node
that is also reached from the loop can be reached from the closest node �because it must
have a greater reverse postorder numbering�� thus� the closest node is considered the follow
node of an endless loop�

Example The loops of Figure ���� have the next follow nodes�

� Follow �loop ������ � 	

� Follow �loop �	
���� � 		

Figure ��� gives an algorithm to determine the follow node of a loop induced by �y� x��
based on the nodesInLoop set determined in the algorithm of Figure ����

����� Structuring ��way Conditionals

Both a single branch conditional �i�e� if��then� and a conditional �i�e� if��then��else�
subgraph have a common end node� from here onwards referred to as the follow node� that
has the property of being immediately dominated by the �way header node� Whenever

�
� Control Flow Analysis

procedure loopFollow �G � �N�E� h�� �y� x�� nodesInLoop�
�	 Pre
 �y� x� induces a loop�
	 nodesInLoop is the set of all nodes that belong to the loop �y� x��
	 Post
 loopFollow�x� is the follow node to the loop induced by �y� x�� 	�

if �loopType�x� �� Pre Tested�
if �outEdges�x��� � nodesInLoop�

loopFollow�x� � outEdges�x���
else

loopFollow�x� � outEdges�x����
end if

else if �loopType�x� �� Post Tested�
if �outEdges�y��� � nodesInLoop�

loopFollow�x� � outEdges�y���
else

loopFollow�x� � outEdges�y����
end if

else �	 endless loop 	�
fol � Max �	 a large constant 	�
for �all �way nodes n � nodesInLoop�

if ��outEdges�x��� �� nodesInLoop� � �outEdges�x��� � fol��
fol � outEdges�x����

else if ��outEdges�x�� �� nodesInLoop� � �outEdges�x�� � fol��
fol � outEdges�x���

end if
end for
if �fol �� Max�

loopFollow�x� � fol�
end if

end if
end procedure

Figure ���� Algorithm to Determine the Follow of a Loop

these subgraphs are nested� they can have di�erent follow nodes or share the same common
follow node� Consider the graph in Figure ����� which is the same graph from Figure ��
without intermediate instruction information� and with immediate dominator information�
The nodes are numbered in reverse postorder�

In this graph there are six �way nodes� namely� nodes �� � �� �� ��� and �� As seen
during loop structuring �Section ������� a �way node that belongs to either the header
or the latching node of a loop is marked as being so� and must not be processed during
�way conditional structuring given that it already belongs to another structure� Hence�
the nodes � and � in Figure ���� are not considered in this analysis� Whenever two or more
conditionals are nested� it is always desirable to analyze the most nested conditional
rst�
and then the outer ones� In the case of the conditionals at nodes � and � node must be

��� Structuring Algorithms �
�

�

�

�
��

n
n n
n
n

n
n
n

n
n
n
n

n

n n

�

�

�
��

�
�R

�
��

�
�R

�

�
���

HHHj

���

�

��R

�
�
�

�
��

�

�

�

�

B
B
B
BBN

��

�

	

�

��

�

Node

�

�

�

�

��

��

�	

��

��

Immediate Dominator

�
	
�
�
�
�
�

�
��
��
�	
��
��
��

�
�
	
	
�
�
�
�

�
�
��
��
��
��

Figure ����� Control Flow Graph with Immediate Dominator Information

analyzed
rst than node � since it is nested in the subgraph headed by �� in other words�
the node that has a greater reverse postorder numbering needs to be analyzed
rst since
it was last visited
rst in the depth
rst search traversal� In this example� both subgraphs
share the common follow node �� therefore� there is no node that is immediately dominated
by node �i�e� the inner conditional�� but � is immediately dominated by � �i�e� the outer
conditional�� and this node is the follow node for both conditionals� Once the follow node
has been determined� the type of the conditional can be known by checking whether one of
the branches of the �way header node is the follow node� in which case� the subgraph is a
single branching conditional� otherwise it is an if��then��else� In the case of nodes ��
and �� node � is analyzed
rst and no follow node is determined since no node takes it
as immediate dominator� This node is left in a list of unresolved nodes� because it can be
nested in another conditional structure� When node �� is analyzed� nodes �� ��� and ��
are possible candidates for follow node� since nodes � and �� reach node ��� this last node
is taken as the follow �i�e� the node that encloses the most number of nodes in a subgraph�
the largest node�� Node �� that is in the list of unresolved follow nodes� is also marked as
having a follow node of ��� It is seen from the graph that these two conditionals are not
properly nested� and a goto jump can be used during code generation�

A generalization of this example provides the algorithm to structure conditionals� The idea
of the algorithm is to determine which nodes are header nodes of conditionals� and which
nodes are the follow of such conditionals� The type of the conditional can be determined
after
nding the follow node by checking whether one of the branches of the header node
is equivalent to the follow node� Inner conditionals are traversed
rst� then outer ones� so

�
	 Control Flow Analysis

a descending reverse postorder traversal is performed �i�e� from greater to smaller node
number�� A set of unresolved conditional follow nodes is kept throughout the process� This
set holds all �way header nodes for which a follow has not been found� For each �way
node that is not part of the header or latching node of a loop� the follow node is calculated
as the node that takes it as an immediate dominator and has two or more in�edges �since
it must be reached by at least two di�erent paths from the header�� If there is more than
one such node� the one that encloses the maximum number of nodes is selected �i�e� the
one with the largest number�� If such a node is not found� the �way header node is placed
on the unresolved set� Whenever a follow node is found� all nodes that belong to the set
of unresolved nodes are set to have the same follow node as the one just found �i�e� they
are nested conditionals or unstructured conditionals that reach this node�� The complete
algorithm is shown in Figure �����

procedure structWay �G��N�E�h��
�	 Pre
 G is a graph�
	 Post
 �way conditionals are marked in G�
	 the follow node for all �way conditionals is determined� 	�

unresolved � fg

for �all nodes m in descending order�
if ��nodeType�m� �� �way� � �inHeadLatch�m� �� False��

if �	 n � n � maxfi j immedDom�i� � m� �inEdges�i�
 g�
follow�m� � n

for �all x � unresolved�
follow�x� � n

unresolved � unresolved � fxg
end for

else
unresolved � unresolved � fmg

end if
end if

end for
end procedure

Figure ����� �way Conditional Structuring Algorithm

Compound Conditions

When structuring graphs in decompilation� not only the structure of the underlying con�
structs is to be considered� but also the underlying intermediate instructions information�
Most high�level languages allow for short�circuit evaluation of compound Boolean conditions
�i�e� conditions that include and and or�� In these languages� the generated control �ow
graphs for these conditional expressions become unstructured since an exit can be performed
as soon as enough conditions have been checked and determined the expression is true or
false as a whole� For example� if the expression x and y is compiled with short�circuit

��� Structuring Algorithms �

evaluation� if expression x is false� the whole expression becomes false and therefore the
expression y is not evaluated� In a similar way� an x or y expression is partially evaluated
if the expression x is true� Figure ��� shows the four di�erent subgraph sets that arise
from compound conditions� The top graphs represent the logical condition that is under
consideration� and the bottom graphs represent the short�circuit evaluated graphs for each
compound condition�

�

n
n

n n

n n
��
�

n n
n
n

n n
��
�

n

n
n

n n
��
�

n
n

n

n n
��
�

nn

J
J�

�
���

J
J
J�

�

�

�
���

A
A
AU

�

�
���

�
���

S
SSw �

�

�
���

J
JJ�

�

��t

SS��

S
SSw

S
SSw

�

�
���

S
SSw

�

�
��

�
���

�

�
���

S
SSw

�

�
�

���

�
�

��R

x

y

t e

x � y

t e

x

y

t e

x � y

t e

x

y

e

�x � y

t e

x

y

t

�x � y

t e

e

Figure ���� Compound Conditional Graphs

During decompilation� whenever a subgraph of the form of the short�circuit evaluated graphs
is found� it is checked for the following properties�

�� Nodes x and y are �way nodes�

� Node y has � in�edge�

�� Node y has a unique instruction� a conditional jump �jcond� high�level instruction�

�� Nodes x and y must branch to a common t or e node�

The
rst� second� and fourth properties are required in order to have an isomorphic sub�
graph to the bottom graphs given in Figure ���� and the third property is required to
determine that the graph represents a compound condition� rather than an abnormal con�
ditional graph� Consider the subgraph of Figure ��� in Figure ���� with intermediate
instruction information� Nodes �� and � are �way nodes� node � has � in�edge� node
� has a unique instruction �a jcond�� and both the true branch of node �� and the false
branch of node � reach node ��� i�e� this subgraph is of the form �x � y in Figure ����

�
� Control Flow Analysis

jcond �loc� � loc�� B�

jcond ��loc� � 	� �� loc�� B��

loc� � loc� � loc� � ��
loc� � loc� � 	

printf ������� loc�� loc��

ret

�����

B��

�
���

PPPPPq

A
A
A
A
AAU

A
A
A
AA					

�

�B�

B

B�

B��

Figure ����� Subgraph of Figure �� with Intermediate Instruction Information

The algorithm to structure compound conditionals makes use of a traversal from top to
bottom of the graph� as the
rst condition in a compound conditional expression is higher
up in the graph �i�e� it is tested
rst�� For all �way nodes� the then and else nodes are
checked for a �way condition� If either of these nodes represents one high�level conditional
instruction �jcond�� and the node has no other entries �i�e� the only in�edge to this node
comes from the header �way node�� and the node forms one of the � subgraphs illustrated in
Figure ���� these two nodes are merged into a unique node that has the equivalent semantic
meaning of the compound condition �i�e� depends on the structure of the subgraph�� and
the node is removed from the graph� This process is repeated until no more compound
conditions are found �i�e� there could be � or more compound ands and ors� so the process
is repeated with the same header node until no more conditionals are found�� The
nal
algorithm is shown in Figure �����

����� Structuring n�way Conditionals

N�way conditionals are structured in a similar way to �way conditionals� Nodes are tra�
versed from bottom to top of the graph in order to
nd nested n�way conditionals
rst�
followed by the outer ones� For each n�way node� a follow node is determined� This node
will optimally have n in�edges coming from the n successor nodes of the n�way header node�
and be immediately dominated by such header node�

The determination of the follow node in an unstructured n�way conditional subgraph makes
use of modi
ed properties of the abovementioned follow node� Consider the unstructured
graph in Figure ����� which has an abnormal exit from the n�way conditional subgraph�
Candidate follow nodes are all nodes that have the header node � as immediate dominator�
and that are not successors of this node� thus� nodes � and � are candidate follow nodes�
Node � has � in�edges that come from paths from the header node� and node � has in�edges
from paths from the header node� Since node � has more paths from the header node that
reach it� this node is considered the follow of the complete subgraph�

��� Structuring Algorithms �
�

procedure structCompConds �G��N�E�h��
�	 Pre
 G is a graph�
	 �way� n�way� and loops have been structured in G�
	 Post
 compound conditionals are structured in G� 	�

change � True
while �change�
change � False
for �all nodes n in postorder�
if �nodeType�n� � �way�
t � succ�n� ��
e � succ�n� �
if ��nodeType�t� � �way� � �numInst�t� � �� � �numInEdges�t� � ���
if �succ�t� �� � e�
modifyGraph ��n � t�
change � True

else if �succ�t� � � e�
modifyGraph �n t�
change � True

end if
else if ��nodeType�e� � �way� � �numInst�e� � �� � �numInEdges�e� � ���
if �succ�e� �� � t�
modifyGraph �n � e�
change � True

else if �succ�e� � � t�
modifyGraph ��n e�
change � True

end if
end if

end if
end for

end while
end procedure

Figure ����� Compound Condition Structuring Algorithm

Unfortunately� abnormal entries into an n�way subgraph are not covered by the above
method� Consider the graph in Figure ����� which has an abnormal entry into one of
the branches of the header n�way node� In this case� node � takes node � as immediate
dominator� due to the abnormal entry ����� instead of �the n�way header node�� In other
words� the follow node takes as immediate dominator the common dominator of all in�edges
to node �� i�e� node �� In this case� the node that performs an abnormal entry into the
subgraph needs to be determined� in order to
nd a follow node that takes it as immediate
dominator� The complete algorithm is shown in Figure �����

�
� Control Flow Analysis

�
�
�
�
�

node immediate Dominator

�
	
�
�
�
�

�

n
�

n	n
n
n

n
�

��
Z

ZZ�

�

�
��

Z
ZZ�

�

�

�

�

�

�

� �

Figure ����� Unstructured n�way Subgraph with Abnormal Exit

�
�
	
	
�

node immediate Dominator

�
	
�
�
�
�

�

�
n �

n

�

nn
n

n
�

��
Z

ZZ�

�
��

�

�
Z

ZZ�

�

�

�

� � �

	

Figure ����� Unstructured n�way Subgraph with Abnormal Entry

����	 Application Order

The structuring algorithms presented in the previous three sections determine the entry and
exit �i�e� header and follow� nodes of subgraphs that represent high�level loops� n�way� and
�way structures� These algorithms cannot be applied in a random order since they do not
form a
nite Church�Rosser system� Consider the graphs in Figure ���	� which due to the
abnormal entries and exits have loop subgraphs� Graph �a� has an abnormal exit from an
n�way subgraph� and the complete graph belongs to the same loop� If this graph ought to be
structured by loops
rst� the back�edge ����� would be found� leading to the loop f����g�
By then structuring n�way conditionals� it is found that node is a header node for an
n�way subgraph� but since only nodes of the subgraph rooted at belong to the loop� it is
determined that the subgraph cannot be structured as an n�way subgraph� but has several
abnormal exits from the loop� On the other hand� if the graph ought to be structured by
n�way subgraphs
rst� the subgraph f��������g would be structured as an n�way subgraph
with follow node �� By then applying the loop algorithm� the nodes from the back�edge
����� are found to belong to di�erent structures �i�e� node � belongs to a structure headed
by node � and node � does not belong to any structure so far�� therefore� an abnormal exit
from one structure to the other exists� and the loop is not structured as such� In the case
of graph �b�� this graph is an irreducible graph� therefore� by
rst structuring it by loops�

��� Structuring Algorithms �

procedure structNWay �G � �N�E�h��
�	 Pre
 G is a graph�
	 Post
 n�way conditionals are structured in G�

the follow node is determined for all n�way subgraphs� 	�

unresolved � fg
for �all nodes m � N in postorder�

if �nodeType�m� �� n�way�
if �	 s
 succ�m�� immedDom�s� �� m�

n � commonImmedDom�fs j s � succ�m�g�
else

n � m

end if
if �	 j� �inEdges�j� �

maxfi j immedDom�i� � n� �inEdges�i�
 � �inEdges�i�g�
follow�m� � j

for �all i � unresolved�
follow�i� � j

unresolved � unresolved � fig
end for

else
unresolved � unresolved � fmg

end if
end if

end for
end procedure

Figure ����� n�way Conditional Structuring Algorithm

a multiexit loop will be found� with abnormal exits coming from the nodes of the n�way
subgraph �which is not structured as such due to the abnormal exits�� On the other hand�
if this graph was structured as an n�way subgraph
rst� the loop would not be structured
as such� but as a goto jump�

These examples illustrate that the series of structuring algorithms presented in the previous
sections is not
nite Church�Rosser� This implies that an ordering is to be followed� and
it is� structure n�way conditionals� followed by loop structuring� and �way conditional
structuring last� Loops are structured
rst than �way conditionals to ensure the Boolean
condition that form part of pre�tested or post�tested loops is part of the loop� rather than
the header of a �way conditional subgraph� Once a �way conditional has been marked as
being in the header or latching node of a loop� it is not considered for further structuring�

��� Control Flow Analysis

�

n

n
n

n nn

n
nn

n
n

n
�

��
Z

ZZ�

�
��

�

�
Z

ZZ�

�

�
��

��
Z

ZZ�
�

�

�
��

Z
ZZ�

�

�

�

�

�a� �b�

�

	

���

�

�

	�

�

�

Figure ���	� Unstructured Graph

The Case of Irreducible Graphs

The examples presented so far in this Chapter deal with reducible graphs� Recall from
Section ����� that a graph is irreducible if it contains a subgraph of the form of the canon�
ical irreducible �owgraph� In essence� a graph is irreducible if it has or more entries �i�e�
a multientry loop�� at least entries are dominated by the same common node� and this
common node dominates the entrance nodes to the loop� Consider the multientry graphs
in Figure ����� These graphs represent di�erent classes of multientry graphs according to
the underlying edges in a depth�
rst tree of the graph� As can be seen� graphs that have
a tree�edge� cross�edge� and forward�edge are irreducible� but the graph with the back�edge
coming into the loop is not irreducible since there is no common node that dominates all
entries into the loop� This later loop is equivalent to an overlapping loop� much in the same
way as a multiexit loop with a back�edge out of the loop �Figure ���� graph �d���

��

�

��

��

� �

�

�

��
m

m m
m
m

m
m
m
m
m

m
m
m

m
m

m
m

m
m

m
m
m

� �

�
�

�
��

��

�

�

back�edge

�

�
��

�

Q
Q
Q
QQs

�

�
�R

�
��

�

�

�
�R

�

�

�

�

�

�

�

�

�

�

�d��c��b��a�

loop back�edge

back�edge

tree�edge forward�edgecross�edge

Figure ����� Multientry Loops � � Cases

��� Structuring Algorithms ���

Since it is the purpose of a decompiler structuring algorithm not to modify the semantics
and functionality of the control �ow graph� node splitting is not used to structure irreducible
graphs� since the addition of new nodes modi
es the semantics of the program� It is therefore
desired to structure the graph without node replication� i�e� leave the graph as an irreducible
graph that has goto jumps� Consider the graph in Figure ���� with immediate dominator
information� Since the graph is irreducible� there is no loop that is contained entirely in
an interval� therefore� the loop structuring algorithm determines that there are no natural
loops as such� When structuring �way conditionals� the conditional at node � is determined
to have the follow node �� since this node is reached from both paths from the header node
and has a greater numbering than node � This means that the graph is structured as a
�way subgraph with follow node �� and no natural loop� During code generation� goto
jumps are used to simulate the loop� and the multientries �see Chapter �� Section �������

m
m
�

��R
�

���

�

�
�

�

m	
F

�

immediate dominator

�
	
�

�
�
�

node

T

Figure ����� Canonical Irreducible Graph with Immediate Dominator Information

Chapter

The Back�end

T he high�level intermediate code generated by the data �ow analyzer� and the structured
control �ow graph generated by the control �ow analyzer� are the input to the back�end�

This module is composed in its entirety by the code generator� which generates code for the
target high�level language� This relationship is shown in Figure ����

�� � � � � �

YHHHHHHHj

� � � � � � � � � �

� � � � � � � � � �

�

�

�

�

�

�

�

�

													�
HLL programFront�end Code Generator

high�level intermediate code

Table
Symbol

structured control �ow graph
UDM

Figure ���� Relation of the Code Generator with the UDM

	�� Code Generation

The code generator generates code for a prede
ned target high�level language� The following
examples make use of the C language as target language� and the examples are based on
the sample control �ow graph of Chapter �� Figure �� after structuring information has
been summarized on the graph�

����� Generating Code for a Basic Block

After data �ow analysis� the intermediate instructions in a basic block are all high�level
instructions� pseudo high�level instructions must have been eliminated from the code before
this point� Consider the control �ow graph in Figure �� after data and control �ow analyses�
For each basic block� the instructions in the basic block are mapped to an equivalent
instruction of the target language� Transfer of control instructions �i�e� jcond and jmp

instructions� are dependent on the structure of the graph �i�e� they belong to a loop
or a conditional jump � and n ways�� or be equivalent to a goto�� and hence� code is
generated for them according to the control �ow information� described in the next Section
�Section ������ This section illustrates how code is generated for all other instructions of a
basic block�

��	 The Back�end

asgn loc�� loc� � �
jcond �loc� �� loc�� B�

asgn loc�� loc� � loc�
jcond ��loc� � �� �� loc�� B�

�

��

��

�
��

�

�

					

XXXXXz

�

					

XXXXXXz

�

�

�

�

PPPPPq

�

XXXXXz
������

asgn loc�� �

call printf ������� loc�� loc��

A
A
A
A
A
AAU

B�

B�

jcond �loc� � ��� B�	

��loc� � 	� �� loc��� B��
jcond ��loc� �� loc�� and

B�

B��

ret

B	

asgn loc�� loc� �� �

asgn loc�� �

asgn loc�� loc� �� �

asgn loc	� loc�

jcond �loc	 � �� B��

asgn loc�� loc� � �

asgn loc�� loc� � 	
asgn loc�� �loc� � loc�� � �� call printf ������� loc�� loc	�

asgn loc	� loc	 � �B�

B��

B�	

B��

B��

B� B�

B�

B��

Figure ��� Sample Control Flow Graph After Data and Control Flow Analyses

Generating Code for asgn Instructions

The asgn instruction assigns to an identi
er an arithmetic expression or another identi
er�
Expressions are stored by the decompiler in abstract syntax trees� therefore� a tree walker is
used to generate code for them� Consider the
rst instruction of basic block B�� Figure ���

asgn loc�� �

The left hand side is the local identi
er loc� and the right hand side is the constant identi
er
�� Since both expressions are identi
ers� the code is trivially translated to�

loc� 	 ��

The
rst instruction of basic block B�� Figure �� uses an expression in its right hand side�

asgn loc�� �loc� � loc�
 ��

This instruction is represented by the abstract syntax tree of Figure ���� only the right
hand side of the instruction is stored in the abstract syntax tree format �
eld arg of the
intermediate triplet �see Figure ���� Chapter ���� From the tree� the right hand side is
equivalent to the expression �loc� � loc�
 ��� and the C code for this instruction is�

loc� 	 �loc� � loc�
 ���

��� Code Generation ��

�
��

Q
QQ

�
��

Q
QQ

���
HHHH

�

loc�

loc� loc�

� ��

�

Figure ���� Abstract Syntax Tree for First Instruction of B�

Generating code from an abstract syntax tree is solved in a recursive way according to
the type of operator� binary or unary� For binary operators� the left branch of the tree
is traversed� followed by the operator� and the traversal of the right branch� For unary
operators� the operator is
rst displayed� followed by its subtree expression� In both cases�
the recursion ends when an identi
er is met �i�e� the leaves of the tree��

Example �� Expressions are de�ned in an intermediate language using the following types
of expressions�

� Binary expressions� all expressions that use a binary operator� The binary operators
and their C counterparts are�

� Less or equal to ��	��

� Less than ����

� Equal �		��

� Not equal �!	��

� Greater ����

� Greater or equal to ��	��

� Bitwise and �"��

� Bitwise or �#��

� Bitwise xor �$��

� Not �	�s complement� �%��

� Add ����

� Subtract �
��

� Multiply ����

� Divide ����

� Modulus ����

� Shift right �����

� Shift left �����

� Compound and �""��

� Compound or �##��

��� The Back�end

� Unary expressions� all expression that use a unary operator� The unary operators and
their C counterparts are�

� Expression negation �!��

� Address of �"��

� Dereference ����

� Post and pre increment �����

� Post and pre decrement �

��

� Identi�ers� an identi�er is the minimum type of expression� Identi�ers are classi�ed
according to their location in memory and�or in registers� in the following way�

� Global variable�

� Local variable �negative o�sets from the stack frame��

� Formal parameter �positive o�set from the stack frame��

� Constant�

� Register�

� Function �function name and actual argument list��

The algorithm of Figure �� generates code for an expression that uses the above operator
types� by walking the tree recursively�

procedure walkCondExp �e
 expression�
�	 Pre
 e points to an expression tree �abstract syntax tree��
	 Post
 the code for the expression tree pointed to by e is written� 	�

case �expressionType�e��
Boolean
 write ����s �s �s��� walkCondExp �lhs�e��� operatorType�e��

walkCondExp �rhs�e����
Unary
 write ���s ��s��� operatorType�e�� walkCondExp �exp�e����
Identi�er
 write ���s�� identi�erName�e���

end case
end procedure

Figure ���� Algorithm to Generate Code from an Expression Tree

The identi
erName�e� function returns the name of the identi
er in the identi
er node
e� this name is taken from the appropriate symbol table �i�e� global� local or argument��
Whenever the identi
er is a register� the register is uniquely named by generating a new
local variable� the next in the sequence of local variables� The new variable is placed at the
end of the subroutine�s local variables de
nition�

��� Code Generation ���

Generating Code for call Instructions

The call instruction invokes a procedure with the list of actual arguments� This list is
stored in the arg
eld and is a sequential list of expressions �i�e� arithmetic expressions
and�or identi
ers�� The name of the procedure is displayed followed by the actual
arguments� which are displayed using the tree walker algorithm of Figure ����

Generating Code for ret Instructions

The ret instruction returns an expression�identi
er in a function� If the return instruction
does not take any arguments� the procedure is
nished at that statement� The return of an
expression is optional�

The complete algorithm to generate code for a basic block �excluding transfer instructions�
is shown in Figure ���� In this algorithm the function indent�� is used� this function returns
one or more spaces depending on the indentation level �� spaces per indentation level��

procedure writeBB �BB
 basicBlock� indLevel
 integer�
�	 Pre
 BB is a basic block�
	 indLevel is the indentation level to be used in this basic block�
	 Post
 the code for all instructions� except transfer instructions� is displayed� 	�

for �all high�level instructions i of BB� do
case �instType�i��

asgn
 write ���s�s � �s�$n�� indent�indLevel�� walkCondExp �lhs�i���
walkCondExp �rhs�i����

call
 fa � ���
for �all actual arguments f � formalArgList�i�� do

append �fa� ��s��� walkCondExp �f���
end for
write ���s�s ��s��$n�� indent �indLevel�� invokedProc �i�� fa��

ret
 write ���sreturn ��s��$n�� indent�indLevel�� exp�i���
end case

end for
end procedure

Figure ���� Algorithm to Generate Code from a Basic Block

����� Generating Code from Control Flow Graphs

The information collected during control �ow analysis of the graph is used in code genera�
tion to determine the order in which code should be generated for the graph� Consider the
graph in Figure ��� with structuring information� This graph is the same graph of Figure ��
 without intermediate instruction information� nodes are numbered in reverse postorder�

The generation of code from a graph can be viewed as the problem of generating code for
the root node� recursing on the successor nodes that belong the structure rooted at the root

��� The Back�end

n
n

��R

�
��

��

��

loopType loopFollow

��

��

pre test

post test

ifFollow

�
�

��

��

�

�

�
��

n
n n
n
n

n
n
n

n

n n

�

�

�
��

�
�R

�
��

�
�R

n

�

��

�
���

HHHj

���
�

�

�

�

�

	

� �

�

�

�

�

��

��

node

�
	
�
�
�
�
�

�
��
��
��
��

Figure ���� Control Flow Graph with Structuring Information

node �if any�� and continue code generation with the follow node of the structure� Recall
from Chapter � that the follow node is the
rst node that is reached from a structure �i�e�
the
rst node that is executed once the structure is
nished�� Follow nodes for loops� �way
and n�way conditionals are calculated during the control �ow analysis phase� Other trans�
fer of control nodes �i�e� ��way� fall�through� call� transfer control to the unique successor
node� hence the follow is the successor� and termination nodes �i�e� return� are leaves in
the underlying depth�
rst search tree of the graph� and hence terminate the generation of
code along that path�

This section describes the component algorithms of the algorithm to generate code for a
procedure� writeCode��� To make the explanation easier� we will assume that this routine
exists� therefore� we concentrate only on the generation of code for a particular structure
and let the writeCode�� routine generate code for the components of the structure� After
enough algorithms have been explained� the algorithm for writeCode�� is given�

Generating Code for Loops

Given a subgraph rooted at a loop header node� code for this loop is generated based on
the type of loop� Regardless of type of loop� all loops have the same structure� loop header�
loop body� and loop trailer� Both the loop header and trailer are generated depending on
the type of loop� and the loop body is generated by generating code for the subgraph rooted
at the
rst node of the loop body� Consider the loops in the graph of Figure ���� The loop
rooted at node � is a pre�tested loop� and the loop rooted at node 	 is a post�tested loop�

��� Code Generation ��

In the case of the pre�tested loop� when the loop condition is True �i�e� the jcond Boolean
conditional in node ��� the loop body is executed� If the branch into the loop was the False
branch� the loop condition has to be negated since the loop is executed when the condition
is False� The loop body is generated by the writeCode�� routine� and the loop trailer
consists only of an end of loop bracket �in C�� Once this code has been generated� code
for the loop follow node is generated by invoking the writeCode�� routine� The following
skeleton is used�

write ���s while �loc� � ��� � n�� indent�indLevel��

writeCode ��� indLevel � �� ��� ifFollow� nFollow�

write ���s � n�� indent�indLevel��

writeCode ���� indLevel� latchNode� ifFollow� nFollow�

where the
rst instruction generates code for the loop header� the second instruction gen�
erates code for the loop body� rooted at node � and having a latching node ��� the third
instruction generates code for the loop trailer� and the fourth instruction generates code for
the rest of the graph rooted at node ���

In the post�tested loop� the loop condition is true when the branch is made to the loop
header node� The following skeleton is used�

write ���s do � n�� indent�indLevel��

writeBB ��� indLevel � ��

writeCode ��� indLevel � �� �� ifFollow� nFollow�

write ���s � while �loc� � ��� n�� indent�indLevel��

writeCode ���� indLevel� latchNode� ifFollow� nFollow�

where the
rst instruction generates code for the loop header� the second instruction gener�
ates code for the instruction in the root node� the third instruction generates code for the
loop body rooted at node � and ended at the loop latching node �� the fourth instruction
generates the loop trailer� and the
fth instruction generates code for the remainder of the
graph rooted at node ��� Code is generated in a similar way for endless loops� with the
distinction that there may or may not be a loop follow node�

Normally pre�tested loop header nodes have only one instruction associated with them�
but in languages that allow for several logical instructions to be coded in the one physical
instruction� such as in C� these instructions will be in the header node but not all of them
would form part of the loop condition� For example� in the following C loop�

while ��a �	 ��� � ���

�

printf ��greater than �� n���

a 	 a
 b�

�

the while�� statement has two purposes� to add �� to variable a� and to check that after
this assignment a is greater than ��� Since our choice of intermediate code allows for
only one instruction to be stored in an intermediate instruction� the assignment and the
comparison form part of two di�erent instructions� as shown in the following intermediate
code�

��� The Back�end

B��

asgn a� a � ��

jcond �a �	 ��� B�

B�

call printf ��greater than �� n��

asgn a� a
 b

jmp B�

B��

�� other code ��

Two solutions are considered for this case� preserve the while�� loop structure by repeating
the extra instructions in the header basic block at the end of the loop� or transform the
while�� loop into an endless for ���� loop that breaks out of the loop whenever the
Boolean condition associated with the while�� is False� In our example� the former case
leads to the following code in C�

a 	 a � ���

while �a � ��� �

printf ��greater than �� n���

a 	 a
 b�

a 	 a � ���

�

and the latter case leads to the following C code�

for ���� �

a 	 a � ���

if �a �	 ���

break�

printf ��greater than �� n���

a 	 a
 b�

�

Either approach generates correct code for the graph� the former method replicates code
�normally a few instructions� if any� and preserves the while�� structure� the latter method
does not replicate code but modi
es the structure of the original loop� In this thesis the
former method is used in preference to the latter� since this solution provides code that is
easier to understand than the latter solution�

When generating code for the loop body or the loop follow node� if the target node has
already been traversed by the code generator� it means that the node has already been
reached along another path� therefore� a goto label needs to be generated to transfer control
to the target code� The algorithm in Figure ��� generates code for a graph rooted at a loop
header node� This algorithm generates code in C� and assumes the existence of the function
invExp�� which returns the inverse of an expression �i�e� negates the expression�� and the
procedure emitGotoLabel��which generates a unique label� generates a goto to that label�
and places the label at the appropriate position in the
nal C code�

��� Code Generation ���

procedure writeLoop �BB
 basicBlock� i� latchNode� ifFollow� nFollow
 Integer�
�	 Pre
 BB is a pointer to the header basic block of a loop�
	 i is the indentation level used for this basic block�
	 latchNode is the number of the latching node of the enclosing loop �if any��
	 ifFollow is the number of the follow node of the enclosing if structure �if any��
	 nFollow is the number of the follow node of the enclosing n�way structure �if any��
	 Post
 code for the graph rooted at BB is generated� 	�

traversedNode�BB� � True�
case �loopType�BB�� �	 Write loop header 	�
Pre Tested

writeBB �BB� i��
if �succ �BB� Else� �� loopFollow�BB�� then
write ���s while ��s� f$n�� indent�i�� walkCondExp �loopExp�BB����

else
write ���s while ��s� f $n�� indent�i�� walkCondExp �invExp�loopExp�BB�����

end if
Post Tested
 write ���s do$n f�� indent�i���

writeBB �BB� i����
Endless
 write ���s for ���� f $n�� indent�i���

writeBB �BB� i����
end case
if ��nodeType�BB� �� Return� �revPostorder�BB� �� latchNode�� then return�
if �latchNode�BB� �� BB� then �	 Loop is several basic blocks 	�
for �all successors s of BB� do
if �loopType�BB� �� Pre Tested� �s �� loopFollow�BB�� then
if �traversedNode�BB� �� False� then
writeCode �s� i��� latchNode �BB�� ifFollow� nFollow��

else �	 has been traversed 	�
emitGotoLabel ��rstInst�s���

end if
end if

end for
end if
case �loopType�BB�� �	 Write loop trailer 	�
Pre Tested
 writeBB �BB� i����

write ���s g$n�� indent�i���
Post Tested
 write ���s g while ��s�� $n�� indent�i�� walkCondExp �loopExp�BB����
Endless
 write ���s g $n�� indent�i���

end case
if �traversedNode�loopFollow�BB�� �� False� then �	 Continue with follow 	�
writeCode �loopFollow�BB�� i� latchNode� ifFollow� nFollow��

else
emitGotoLabel ��rstInst�loopFollow�BB����

end if
end procedure

Figure ���� Algorithm to Generate Code for a Loop Header Rooted Graph

��� The Back�end

Generating Code for ��way Rooted Graphs

Given a graph rooted at a �way node that does not form part of a loop conditional expres�
sion� code for this graph is generated by determining whether the node is the header of an
if��then or an if��then��else condition� In the former case� code is generated for the
condition of the if� followed by the code for the then clause� and
nalized with the code for
the if follow subgraph� In the latter case� code is generated for the if condition� followed
by the then and else clauses� and
nalized with the code for the follow node� Consider
the two �way nodes in Figure ��� which do not form part of loop expressions� nodes ��
and ���

Node � is the root of an if��then structure since the follow node �node �� is one of the
immediate successors of node �� The other immediate successor� node � is the body of the
then clause� which is reached when the condition in node � is False� i�e� the condition needs
to be negated� as in the following code�

write ���s if �loc� � loc� � n�� indent�indLevel��

writeCode ��� indLevel��� latchNode� �� nFollow�

write ���s � n�� indent�indLevel��

writeCode ��� indLevel� latchNode� ifFollow� nFollow�

where the
rst instruction generates code for the negated condition of the if� the second
instruction generates code for the then clause subgraph which is rooted at node and has �
as a follow node� the third instruction generates the trailer of the if� and the last instruction
generates code for the follow subgraph rooted at node ��

Node is the root of an if��then��else structure� In this case� neither immediate
successors of the header node are equivalent to the follow node� The True branch is reached
when the condition is True� and the False branch is reached when the condition is False�
leading to the following code�

write ���s if ��loc� � � �	 loc� � n�� indent�indLevel��

writeCode ��� indLevel��� latchNode� �� nFollow�

write ���s � n else � n�� indent�indLevel��

writeCode �� indLevel��� latchNode� �� nFollow�

write ���s � n�� indent�indLevel��

where the
rst instruction generates code for the if condition� the second instruction gener�
ates code for the then clause� the third instruction generates the else� the fourth instruction
generates code for the else clause� and the last instruction generates the if trailer� Code
for the follow node is not generated in this case because this conditional is nested in another
conditional that also takes � as the follow node� This is easily checked with the ifFollow
parameter� which speci
es the follow of the enclosing if� if it is the same� code for this node
is not yet generated�

In a similar way� code is generated for the subgraph rooted at node ��� In this case� the
True branch leads to the follow node� hence� the Boolean condition associated with this if
has to be negated� and the False branch becomes the then clause� The following skeletal
code is used�

��� Code Generation ���

write ���s if ��loc��loc� ## ��loc����loc��� � n�� indent�indLevel��

writeCode ���� indLevel��� latchNode� �� nFollow�

write ���s � n�� indent�indLevel��

writeCode ��� indLevel� latchNode� ifFollow� nFollow�

As with loops� goto jumps are generated when certain nodes in the graph have been visited
before the current subgraph visits them� In this case� whenever the branches of a �way
node have already been visited� a goto to such branch�es� is generated� Also� whenever a
�way rooted subgraph does not have a follow node it means that the two branches of the
graph do not lead to a common node because the branches are ended �i�e� a return node is
met� before met� In this case� code is generated for both branches� and the end of the path
will ensure that the recursion is ended� The algorithm in Figure ��	 generates code for a
graph rooted at a �way node that does not form part of a loop Boolean expression�

Generating Code for n�way Rooted Graphs

Given a graph rooted at an n�way node� code for this graph is generated in the following
way� the n�way header code is emitted �a switch�� is used in C�� and for each successor of
the header node the n�way option is emitted �a case is used in C�� followed by the genera�
tion of code of the subgraph rooted at that successor and ended at the n�way follow node�
Once the code for all successors has been generated� the n�way trailer is generated� and
code is generated for the rest of the graph by generating code for the graph rooted at the
follow node of the n�way header node� Whenever generating code for one of the branches
or the follow node of the n�way structure� if the target node has already been traversed� a
goto jump is generated to transfer control to the code associated with that node�

The algorithm in Figure ��� generates code for a graph rooted at an n�way node�

Generating Code for ��way� Fall� and Call Rooted Graphs

Given a graph rooted at a ��way� fall�through� or call node� the code for the basic block is
generated� followed by the unique successor of such node� Even though call nodes have
successors� one of the successor edges points to the subroutine invoked by this instruction�
since code is generated on a subroutine at a time basis� this branch is disregarded for code
generation purposes� and the node is thought of as having a unique successor�

The algorithm in Figure ���� generates code for nodes that have a unique successor node�
If code has already been generated for the unique follow node� it means that the graph was
reached along another path and hence a goto jump is generated to transfer control to the
code associated with that subgraph�

A Complete Algorithm

The
nal algorithm to generate C code from a subroutine�s graph is shown in Figure �����
The writeCode�� procedure takes as arguments a pointer to a basic block� the indentation
level to be used� the latching node of an enclosing loop �if any�� and the follow nodes of
enclosing �way and n�way conditionals �if any�� Initially� the basic block pointer points to
the start of the subroutine�s graph� the indentation level is �� and there are no latching or

��	 The Back�end

procedure writeway �BB
 basicBlock� i� latchNode� ifFollow� nFollow
 Integer�
�	 Pre
 BB is a �way basic block�
	 i is the indentation level�
	 latchNode is the latching node of the enclosing loop �if any��
	 ifFollow is the follow node of the enclosing �way structure �if any��
	 nFollow is the number of the follow node of the enclosing n�way structure �if any��
	 Post
 the code for the tree rooted at BB is generated� 	�

if �ifFollow�BB� �� MAX� then
emptyThen � False�
if �traversedNode�succ�BB�Then�� �� False� then �	 Process then clause 	�
if �succ�BB�Then� �� ifFollow�BB�� then
write ��$n �s if ��s� $n f�� indent�i���� walkCondExp �ifExp�BB���
writeCode �succ�BB�Then�� i��� latchNode� ifFollow�BB�� nFollow��

else �	 empty then clause� negate else clause 	�
write ��$n �s if ��s� $n f�� indent�i���� walkCondExp �invExp�ifExp�BB����
writeCode �succ�BB�Else�� i��� latchNode� ifFollow�BB�� nFollow��
emptyThen � True�

end if
else
emitGotoLabel ��rstInst�succ�BB�Then����

end if
if �traversedNode�succ�BB�Else�� �� False� then �	 Process else clause 	�
if �succ�BB�Else� �� ifFollow�BB�� then
write ���s g $n �s else $n f�� indent�i�� indent�i���
writeCode �succ�BB�Else�� i��� latchNode� ifFollow�BB�� nFollow��

end if
else if �emptyThen �� False�
write ���s g $n �s else $n f�� indent�i�� indent�i���
emitGotoLabel ��rstInst�succ�BB�Else����

end if
write ���s g $n�� indent�i���
if �traversedNode�ifFollow�BB�� �� False�� then
writeCode �ifFollow�BB�� i� latchNode� ifFollow� nFollow��

end if
else �	 No follow� emit if��then��else 	�

write ��$n �s if ��s� f $n�� indent�i�� walkCondExp�ifExp�BB���
writeCode �succ�BB�Then�� i� latchNode� ifFollow� nFollow��
write ���s g $n �s else $n f�� indent�i�� indent�i���
writeCode �succ�BB�Else�� i� latchNode� ifFollow� nFollow��
write ���s g $n�� indent�i���

end if
end procedure

Figure ��	� Algorithm to Generate Code for a �way Rooted Graph

��� Code Generation ��

procedure writeNway �BB
 basicBlock� i� latchNode� ifFollow� nFollow
 Integer�
�	 Pre
 BB is an n�way basic block�
	 i is the indentation level�
	 latchNode is the number of the enclosing loop latching node �if any��
	 ifFollow is the number of the enclosing if terminating node �if any��
	 nFollow is the number of the enclosing n�way terminating node �if any��
	 Post
 code is generated for the graph rooted at BB� 	�

write ���s switch ��s� f $n�� indent�i�� nwayExp�BB���
for �all successors s of BB� do �	 Generate Code for each Branch 	�

if �traversedNode�s� �� False� then
write ���s case �s
 $n�� indent�i���� index�s���
writeCode �s� i�� latchNode� ifFollow� nwayFollow�BB���
write ���s break� $n�� indent�i����

else
emitGotoLabel ��rstInst�s���

end if
end for
if �traversedNode�nwayFollow�BB�� �� False� �	 Generate code for the follow node 	�

writeCode �nwayFollow�BB�� i� latchNode� ifFollow� nFollow��
else

emitGotoLabel ��rstInst�nwayFollow�BB����
end if

end procedure

Figure ���� Algorithm to Generate Code for an n�way Rooted Graph

follow nodes to check upon �these values are set to a predetermined value�� Whenever a
follow node is met� no more code is generated along that path� and the procedure returns
to the invoking procedure which is able to handle the code generation of the follow node�
This is done so that the trailer of a conditional is generated before the code that follows
the conditional� In the case of loops� the latching node is the last node for which code is
generated along a path� after which recursion is ended and the invoked procedure handles
the loop trailer code generation and the continuation of the follow of the loop�

The procedure order in which code is generated is determined by the call graph of the pro�
gram� We like to generate code for the nested procedures
rst� followed by the ones that
invoke them� hence� a depth�
rst search ordering on the call graph is followed� marking
each subroutine graph as being traversed once it has been considered for code generation�
C code for each subroutine is written by generating code for the header of the subroutine�
followed by the local variables de
nition� and the body of the subroutine� The algorithm
in Figure ��� shows the ordering used� and the generation of code for the subroutine� The
isLib�� function is used in this algorithm to determine whether a subroutine is a library or
not� code is not generated for library routines that were detected by the signature method of
Chapter 	� The writeComments�� procedure writes information collected from the analysis

��� The Back�end

procedure write�way �BB
 basicBlock� i� latchNode� ifFollow� nFollow
 Integer�
�	 Pre
 BB is a pointer to a ��way� call� or fall�through basic block�
	 i is the indentation level used for this basic block�
	 latchNode is the number of the latching node of the enclosing loop �if any��
	 ifFollow is the number of the follow node of the enclosing �way structure �if any��
	 nFollow is the number of the follow node of the enclosing n�way structure �if any��
	 Post
 code for the graph rooted at BB is generated� 	�

writeBB �BB� i��
if �traversedNode�succ�BB���� �� False� then
writeCode �succ�BB���� i� latchNode� ifFollow� nFollow��

else
emitGotoLabel ��rstInst�succ�BB������

end if
end procedure

Figure ����� Algorithm to Generate Code for ��way� Call� and Fall Rooted Graphs

procedure writeCode �BB
 basicBlock� i� latchNode� ifFollow� nFollow
 Integer�
�	 Pre
 BB is a pointer to a basic block� Initially it points to the head of the graph�
	 i is the indentation level used for this basic block�
	 latchNode is the number of the latching node of the enclosing loop �if any��
	 ifFollow is the number of the follow node of the enclosing �way structure �if any��
	 nFollow is the number of the follow node of the enclosing n�way structure �if any��
	 Post
 code for the graph rooted at BB is generated� 	�

if ��revPostorder�BB� �� �ifFollow nFollow�� �traversedNode�BB� �� True�� then
return�

end if
traversedNode�BB� � True�
if �isLoopHeader�BB�� then �	 ��� for loops 	�
writeLoop �BB� i� latchNode� ifFollow��

else �	 ��� for other nodes 	�
case �nodeType�BB��
�way
 writeway �BB� i� latchNode� ifFollow� nFollow��
n�way
 writeNway �BB� i� latchNode� ifFollow� nFollow��
default
 write�way �BB� i� latchNode� ifFollow� nFollow��

end case
end if

end procedure

Figure ����� Algorithm to Generate Code from a Control Flow Graph

��� Code Generation ���

of the subroutine� such as the type of arguments that were used �stack arguments or register
arguments�� whether a high�level prologue was detected in the subroutine� the number of
arguments the subroutine takes� whether the subroutine generates an irreducible graph or
not� and many more�

procedure writeProc �p
 procedure�
�	 Pre
 p is a procedure pointer� initially the start node of the call graph�
	 Post
 C code is written for the program rooted at p in a depth��rst fashion� 	�

if �traversedProc�p� isLib�p�� then
return�

end if
traversedProc�p� � True�
for �all successors s � succ�p�� do �	 Dfs on Successors 	�

writeProc �s��
end for

�	 Generate code for this procedure 	�
if �isFunction�p�� then �	 Generate Subroutine Header 	�

write ���s �s ��s� $n f�� returnType�p�� funcName�p�� formalArgList�p���
else

write ��void �s ��s� $n f�� procName�p�� formalArgList�p���
end if
writeComments�p�� �	 Generate Subroutine Comments 	�
for �all local variables v � localStkFrame�p�� do �	 Local Variable De�nitions 	�

write ���s �s�$n�� varType�v�� genUniqueName�v���
end for
if �isHighLevel�p�� then �	 Generate Code for Subroutine 	�

writeCode �controlFlowGraph�p�� �� Max� Max� Max��
else �	 low�level subroutine� generate assembler 	�

disassemble�p��
end if
write ��g$n���

end procedure

Figure ���� Algorithm to Generate Code from a Call Graph

Using the algorithms described in this section� the C code in Figure ���� is generated for
the graph of Figure ��� Local variables are uniquely named in a sequential order starting
from one� and making use of the pre
x loc �for local��

��� The Back�end

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

int loc��

int loc��

loc� 	 �

loc� 	 �loc� � ��

if �loc� # loc�� �

loc� 	 �loc� � loc���

if ��loc� ## �� " loc�� �

loc� 	 �loc� ## ���

else �

loc� 	 �loc� ## ���

loc� 	 ��

while ��loc� # ���� �

loc� 	 loc��

do �

loc� 	 �loc� � ���

printf ��i 	 &d� j 	 &d$n�� loc�� loc���

 while ��loc� # ���

loc� 	 �loc� � ���

if ��loc� "	 loc�� !! ��loc� ## �� #	 loc��� �

loc� 	 ��loc� � loc��
 ����

loc� 	 �loc� � ���

printf ��a 	 &d� b 	 &d$n�� loc�� loc���

Figure ����� Final Code for the Graph of Figure ��

����� The Case of Irreducible Graphs

As pointed out in Chapter �� Section ������ loops of irreducible graphs are not structured as
natural loops since the nodes of the loop do not form part of a complete interval� Consider
the canonical irreducible �ow graph of Figure ���� with structuring information�

��� Code Generation ��

m
m

�
��R

�
���

�

�
�m

�
�

	 �

�
	
�

TF

ifFollownode

Figure ����� Canonical Irreducible Graph with Structuring Information

During code generation� code for the if in node � is generated
rst� since the True branch
leads to the follow node of the if �node ��� the False branch of node � is the then clause
�negating the Boolean condition associated with node ��� Code for the then clause is
generated� and the if��then is followed by the code generated for node �� Since node �
transfers control to node � which has already been visited during code generation� a goto
jump is generated to the associated code of node � This goto simulates the loop and
provides an unstructured if��then structure by transferring control to the then clause of
the if� The skeletal code for this graph in C is as follows�

if �! �� �

L� ��

�

��

goto L�

where the numbers represent the basic blocks and code for each basic block is generated by
the writeBB�� procedure�

Chapter �

Decompilation Tools

T he decompiler tools are a series of programs that help the decompiler generate target
high�level language programs� Given a binary
le� the loader determines where the

binary image starts� and whether there is any relocation information for the
le� Once the
binary image has been loaded into memory �and possibly relocated�� a disassembler can
be used to parse the binary image and produce an assembler form of the program� The
parsing process can bene
t from the use of a compiler and library signature recognizer�
which determines whether a subroutine is a library subroutine or not� according to a set
of prede
ned signatures generated by another program� In this way� only the original code
written by the user is disassembled and decompiled� The disassembler can be considered
part of the decompiler� as it parses only the binary image �i�e� it is a phase of the front�end
module�� Once the program has been parsed� it can be decompiled using the methods of
Chapters ���� �� and �� generating the target high�level program� Finally� a postprocessor
program can improve the quality of the high�level code� Figure 	�� shows the di�erent
stages involved in a decompilation system�

�

�

�

�

�

�

�

�

�

�

�
�

XXXXXXy

						

�

library signatures
�

assembler program

library bindings

absolute machine code

loader

disassembler

decompiler

HLL program

postprocessor

HLL program

relocatable machine code

prototype generator

library prototypes

library headers

compiler signatures

libraries

signature generator

Figure 	��� Decompilation System

��� Decompilation Tools

�� The Loader

The loader is an operating system program that loads an executable or binary program
into memory if there is su�cient free memory for the program to be loaded and run� Most
binary programs contain information on the amount of memory that is required to run the
program� relocation addresses� and initial segment register values� Once the program is
loaded into memory� the loader transfers control to the binary program by setting up the
code and instruction segments�

The structure of binary programs di�ers from one operating system to another� therefore�
the loading of a program is dependent on the operating system and the machine the binary
program runs in� The simplest form of binary programs contains only the binary image of
the program� that is� a fully linked image of the program that is loaded into memory as is�
without any changes made to the binary image� The �com
les under the DOS operating
system use this binary structure� Most binary programs contain not only the binary image�
but also header information to determine the type of binary program �i�e� there can be
di�erent types of executable programs for the same operating system� or for di�erent oper�
ating systems that run on the same machine� and initial register values� and a relocation
table that holds word o�sets from the start of the binary image which need to be relocated
according to the address were the program is loaded into memory� This type of binary
le
is used in the �exe
les under DOS and Windows� The general format of a binary program
is shown in Figure 	��

header

binary image

relocation table

Figure 	�� General Format of a Binary Program

The algorithm used to load a program into memory is as follows� the type of binary
le is
determined �on systems that allow for di�erent types of binary
les�� if the
le is a binary
image on its own� the size of memory to be allocated is the size of the
le� therefore� a block
of memory of the size of the
le is allocated� the
le is loaded into the block of memory
as is� without any modi
cations� and the default segment registers are set� In the case of
binary
les with header and relocation table information� the header is read to determine
how much memory is needed to load the program� were the relocation table is� and to get
other information to set up registers� A memory block of the size given in the header is
allocated� the binary image of the
le is then loaded into the memory block� the elements
in the relocation table are relocated in memory� and segment registers are set up according
to the information in the header� The algorithm is shown in Figure 	���

��� Signature Generator ���

procedure loader �name
 �leName�
�	 Pre
 name is the name of a binary �le�
	 Post
 the binary program name has been loaded into memory� 	�

determine type of binary program�
if �only binary image� then

S � size of the binary �le�
allocate free block of memory of size S�
load �le into allocated memory block� at a prede�ned o�set�
setup default segment registers�

else
read header information�
S � size of the binary image �from the header information��
allocate free block of memory of size S�
load binary image into allocated memory block�
relocate all items from the relocation table in memory�
setup segment registers with information from the header�

end if
end procedure

Figure 	��� Loader Algorithm

�� Signature Generator

A signature generator is a program that automatically generates signatures for an input

le� A signature is a binary pattern used to recognize viruses� compilers� and library sub�
routines� The aim of signatures in decompilation is to undo the process performed by the
linker� that is� to determine which subroutines are libraries and compiler start�up code� and
replace them by their name �in the former case� or eliminate them from the target output
code �in the latter case�� This is the case for operating systems that do not share libraries�
and therefore bind the library subroutine�s object code into the program�s binary image�
No information on the subroutine�s name or arguments is stored in the binary program�
hence� without a method to distinguish them from user�written subroutines� it is impos�
sible to di�erentiate them from other subroutines� In the case of operating systems that
share library subroutines� the subroutine does not form part of the binary program� and a
reference to the subroutine is made in the program� hence� the subroutine�s name is stored
as part of the binary
le �most likely in the header section�� The methods presented in
this section are targetted at operating systems that do not share library subroutines� and
therefore include them in the binary program�

Once a signature
le has been generated for a set of library subroutines� an interface
procedure is called to check a particular subroutine that is to be parsed by the decom�
piler�disassembler against the library signatures� If a subroutine is matched against one of
the signatures� the subroutine is replaced by its name �i�e� the name of the subroutine in the
library� such as printf� and is marked as not needing any more analysis� In this way the

��	 Decompilation Tools

number of subroutines to be analyzed is reduced� but even better� the quality of the target
high�level program is improved considerably since some subroutine calls will make use of
real library names rather than arbitrary names� Also� since some of the library subrou�
tines are written in assembler for performance reasons or due to low�level machine accesses�
these routines do not have a high�level representation in most cases� and thus� can only be
disassembled as opposed to decompiled� the use of a library signature recognition method
eliminates the need to analyze this type of subroutines� producing better target code�

The ideas presented in this and the next section �Sections ���� and ���� were developed by
Michael Van Emmerik while working at the Queensland University of Technology� These
ideas are expressed in �Emm���� Figure ��� has been reproduced with permission from the
author�

����� Library Subroutine Signatures

A standard library
le is a relocatable object
le that implements di�erent subroutines
available in a particular language�compiler� A library subroutine signature is a binary pat�
tern that uniquely identi
es a subroutine in the library from any other subroutine in that
same library� Since all subroutines perform di�erent functions� a signature that contains
the complete binary pattern of the subroutine will uniquely identify the subroutine from
any other subroutine� The main problem with this approach is the size of the signature and
the overhead created by that size� It is therefore ideal to check only a minimum number
of bytes in the subroutine� hence� the signature is as small as possible� Given the great
number of subroutines in a library� it is not hard to realize that for some subroutines there
is need for n bytes in the signature to uniquely identify them� but n could be greater than
the complete size of small subroutines� therefore� for small subroutines� the remaining bytes
need to be padded with a predetermined value in order to avoid running into bytes that
belong to another library subroutine� For example� if n is �� the library function cos has
�� bytes� and cos is followed by the library function strcpy� the �� bytes of cos form part
of its signature� along with �� bytes of padded predetermined value� otherwise� the �� bytes
would be part of strcpy�

Given the
rst n bytes of a subroutine� machine instructions that use operands which cannot
be determined to be constants or o�sets� or that depend on the address where the module
was loaded� are considered variant bytes that can have a di�erent value in the library
le
and the binary program that contains such a subroutine� It is therefore necessary to wild�
card these variant byte locations� in order to generate an address�independent signature�
Consider the code for a library routine fseek�� in Figure 	��� The call at instruction
��	 has an o�set to the subroutine that is being called� Called subroutines are not always
linked at the same position� therefore� this o�set address is variant� thus it is wildcarded�
The mov at instruction ��� takes as one of its arguments a constant or o�set operand� since
it is not known whether this location is invariant �i�e� a constant�� it is wildcarded as well�
The choice of wildcard value is dependent on the machine assembler� A good candidate is
a byte that is hardly used in the machine� such as halt in this example �opcode F�� or a
byte that is not used in the assembler of the machine� Similar considerations are done for
the padding bytes used when the signature is too small� In this example� �� was used�

��� Signature Generator ��

���� push bp

���� �BEC mov bp� sp

���� � push si

���� �B���� mov si� �bp���

���� � push si

���� E�F�F� call ���� � destination wildcarded

���B � pop cx

���C �BC� or ax� ax

���E ��� jz ���

���� B�F�F� mov ax� ���� � operand wildcarded

���� EB�C jmp ����

��� ���� � padding

Figure 	��� Partial Disassembly of Library Function fseek��

It is noted in this example that although the function fseek�� has more bytes in its image�
the signature is cut after � bytes due to the unconditional jump in instruction ���� This is
done since it is unknown whether the bytes that follow the unconditional jump form part of
the same library subroutine or not� In general� whenever a return or �un�conditional jump
is met� the subroutine is considered
nished for the purposes of library signatures� and any
remaining bytes are padded� The
nal signature for this example is given in Figure 	��� It
should be noted that this method has some small probability of being in error since di�er�
ent subroutines may have the same starting code up to the
rst �un�conditional transfer of
control�

�BEC��B�����E�F�F���BC����B�F�F�EB�C����

Figure 	��� Signature for Library Function fseek��

The algorithm to automatically generate library subroutine signatures is shown in Fig�
ure 	��� This algorithm takes as arguments a standard library
le� the name of the output
signature
le� and the size of the signature �in bytes�� which has been experimentally found
in advance�

Since di�erent library
les are provided by the compiler vendor in machines that use di�erent
memory models� a di�erent signature
le needs to be generated for each memory model� It
is ideal to use a naming convention to determine the compiler vendor and memory model of
the signature library� in that way� eliminating any need for extra header information saved
on the signature
le�

��� Decompilation Tools

procedure genLibrarySignature �lib
libraryFile� signLib
�le� n
integer�
�	 Pre
 lib is a standard library �le�
	 signLib is the name of the output library signature �le�
	 n is the size of the signature in bytes�
	 Post
 the signLib �le is created� and contains all library subroutine signatures� 	�

openFile �signLib��
for �all subroutines s � lib� do

if �s has n consecutive bytes� then
sign����n� � �rst n bytes of s�

else �	 s has only m � n bytes 	�
sign����m� � �rst m bytes of s�
sign�m����n� � paddingValue�

end if
for �all variant bytes b � sign����n�� do

sign�b� � wildcardValue�
end for
write �name�s�� sign����n�� to the �le signLib�

end for
closeFile �signLib��

end procedure

Figure 	��� Signature Algorithm

Integration of Library Signatures and the Decompiler

Given the entry point to a subroutine� the parser disassembles instructions following all
paths from the entry point� If it is known that a particular compiler was used to compile
the source binary program that is currently being analyzed� the parser can check whether
the subroutine is one that belongs to a library �for that particular compiler� or not� If it
does� the code does not need to be parsed since it is known which subroutine was invoked�
and hence� the name of the subroutine is used�

Due to the large number of subroutines present in a library� a linear search is very ine�cient
for checking against all possible signatures in a
le� Hashing is a good technique to use in
this case� and even better� perfect hashing can be used since the signatures are unique for
each subroutine in a given library� and have a
xed size� Perfect hashing information can be
stored in the header of the library signature
le� and used by the parser whenever needing
to determine whether a subroutine belongs to the library or not�

����� Compiler Signature

In order to determine which library signature
le to use with a binary program� the compiler
that was used to compile the original user program needs to be determined� Since di�erent
binary patterns in the compiler start�up code are used by di�erent compiler vendors� these

��� Signature Generator ���

patterns can be manually examined and stored in a signature that uses wildcards� in the
same way as done for library subroutine signatures� Di�erent memory models will provide
di�erent compiler signatures for the same compiler� and most likely� di�erent versions of the
same compiler have di�erent signatures� therefore� a di�erent signature for each �compiler
vendor� memory model� compiler version� is stored� Again� a naming scheme can be used
to di�erentiate di�erent compiler signatures�

Determining the Main Program

The entry point given by the loader is the entry to the compiler start�up code� which invokes
at least a dozen subroutines to set�up its environment before invoking the main subroutine
of the program� i�e� the main in any C program� or the BEGIN in a Modula� program�
The main entry point to a program compiled with a prede
ned compiler is determined by
manual examination of the start�up code� In all C compilers� the parameters to the main��
function �i�e� argv� argc� envp� are pushed before the main function is invoked� therefore�
it is not very hard to determine the main entry point� Most C compilers provide the source
code for their start�up code� in the interest of interoperability� hence the detection of the
main entry point can be done in this way too� Once it is known how to determine the main
entry point� this method is stored in the compiler signature
le for that particular compiler�

Integration of Compiler Signatures with the Decompiler

Before the parser analyzes any instructions at the entry point given by the loader� an
interface procedure is invoked to check for di�erent compiler signatures� This procedure
determines whether the
rst bytes of the loaded program are equivalent to a known
compiler signature� and if so� the compiler vendor� compiler version� and memory model
are determined� and stored in a global structure� Once this is done� the main entry point
is determined by the signature� and that entry point is treated as the starting point for the
parser� From there onwards� any subroutines called by the program can be checked against
the library signature
le for the appropriate compiler vendor� compiler version� and memory
model�

����� Manual Generation of Signatures

Automatic generation of signatures is ideal� but it has the problem of
nding a unique
binary pattern that uniquely identi
es all di�erent subroutines in a library� Experimental
results have shown that the number of repeated signatures across a standard library
le
varies from as low as ��� to as high as ��� �Emm���� Most of the repeated signatures
are due to functions that have di�erent names but the same implementation� or due to
unconditional jumps after a few bytes that force the signature to be cut short early�

A manual method for the generation of signatures was described in �FZ���� and used in an
	�	� C decompiling system �FZL���� A library
le for the Microsoft C version ��� was an�
alyzed by manual inspection of each function� and the following information was stored for
each function� function name� binary pattern for the complete function �including variant
bytes�� and matching method to determine whether an arbitrary subroutine matches it or
not� The matching method is a series of instructions that determines how many
xed bytes
of information there are starting at an o�set in the binary pattern for the function� and

��� Decompilation Tools

what subroutines are called by the function� Whenever an operand cannot be determined to
be an o�set or a constant� those bytes are skipped �i�e� they are not compared against the
bytes in the binary pattern since they are variant bytes�� and when a subroutine is called�
the o�set address of the subroutine is not tested� but the call to the routine is performed�
which in turn is matched against the patterns in the signature� In this way� all paths of the
subroutine are followed and checked against the signature�

The disadvantage of the manual generation of signatures is the time involved in generating
them� typically a library has over �

 subroutines� and numbers increase to over 	�

 for
object oriented languages� Manual generation of signatures for the one library can take days�
up to a week in large library �les� Also� when a new version of the compiler is available�
the signatures have to be reanalyzed manually� hence� the time overhead is great� Using an
automatic signature generator reduces the amount of time to generate the signatures for a
complete library to a few seconds �less than a minute�� with the inconvenience of repeated
signatures for a percentage of the functions� These repeated functions can be manually
checked� and unique signatures generated for them if necessary�

�� Library Prototype Generator

A library prototype generator is a program that automatically generates information on the
prototypes of library subroutines� that is� the type of the arguments used by the subroutine�
and the type of the return value for functions� Determining prototype information on library
subroutines helps the decompiler check for the right type and number of arguments� and
propagate any type information that has wrongly been considered another type due to lack
of information in the analysis� Consider the following code�

mov ax� �

push ax

call printf

During data �ow analysis� this code is transformed into the following code after extended
register copy propagation�

call printf ���

Without knowing the type of arguments that printf takes� the constant argument � is
considered the right argument to this function call� But� if prototype information exists on
this function� the function�s formal argument list would have a
xed pointer to a character
�i�e� a string in C� argument� and a variable number of other parameters of unknown type�
Hence� the constant � could be determined to be an o�set into the data segment rather
than a constant� and replaced by that o�set� This method provides the decompiler with
the following improved code�

printf �&&Hello world n����

and the disassembly version of the program could be improved to�

mov ax� offset szHelloWorld

push ax

call printf

��	 Disassembler ��

where szHelloWorld is the o�set � into the data segment which points to the null termi�
nated string�

It is therefore useful for the decompiler to use library prototypes� Unlike library signatures�
there is a need for only one library prototype
le for each high�level language �i�e� the
standard functions of the language must all have the same prototypes�� Compiler�dependent
libraries require extra prototype
les� Languages like C and Modula� have the advantage of
using header
les that de
ne all library prototypes� These prototypes can be easily parsed
by a program and stored in a
le in a predetermined format� Languages such as Pascal store
the library prototype information in their libraries� therefore� a special parser is required to
read these
les�

Comment on Runtime Support Routines

Compiler runtime support routines are subroutines used by the compiler to perform a par�
ticular task� These subroutines are stored in the library
le� but do not have function
prototypes available to the user �i�e� they are not in the header
le of the library�� hence
they are used only by the compiler and do not follow high�level calling conventions� Most
runtime subroutines have register arguments� and return the result in registers too� Since
there is no prototype available for these subroutines� it is in the interest of the decompiler
to analyze them in order to determine the register argument�s� that are being used� and
the return register�s� �if any��

Runtime support routines are distinguished from any other library routine by checking
the library prototypes� a subroutine that forms part of the library but does not have a
prototype is a runtime routine� These routines have a name �e�g� LXMUL� but the type
of the argument�s� and return value is unknown� During decompilation� these subroutines
are analyzed� and the name from the library
le is used to name the subroutine� Register
arguments are mapped to formal arguments�

Integration of the Library Prototypes and the Decompiler

Whenever the type of compiler used to compile the original source program is determined by
means of compiler signatures� the type of language used to compile that program is known�
hence� the appropriate library prototype
le can be used to determine more information on
library subroutines used in the program� During parsing of the program� if a subroutine is
determined to be one of the subroutines in a library signature
le� the prototype
le for that
language is accessed� and this information along with the subroutine�s name is stored in
the subroutine�s summary information record� This process provides the data �ow analyzer
with a complete certainty on the types of arguments to library subroutines� therefore� these
types can be back�propagated to caller subroutines whenever found to be di�erent to the
ones in the prototype� Also� if the subroutine has a return type de
ned� it means that the
subroutine is really a function� and hence� should be treated as one�

�� Disassembler

A disassembler is a program that converts a source binary program to a target assembler
program� Assembly code uses mnemonics which represent machine opcodes� one or more

�� Decompilation Tools

machine opcodes are mapped to the same assembly mnemonic �e�g� all machine instructions
that add two operands are mapped to the add mnemonic��

Disassemblers are used as tools to modify existing binary
les for which there is no source
available� to clarify undocumented code� to recreate lost source code� and to
nd out how a
program works�Flu	�� Com���� In recent years� disassemblers are used as debugging tools
in the process of determining the existence of virus code in a binary
le� and the disassem�
bly of such a virus� selective disassembly techniques are used to detect potential malicious
code �Gar		��

A disassembler is composed of two phases� the parsing of the binary program� and the
generation of assembler code� The former phase is identical to the parsing phase of the de�
compiler �see Chapter �� Section ����� and the code generator produces assembler code on
the �y or from an internal representation of the binary program� Symbol table information
is also stored� in order to declare all strings and constants in the data segment�

Most public domain DOS disassemblers �Zan	�� GD	�� Cal� Mak��� Sof		� Chr	�� perform
one pass over the binary image without constructing a control �ow graph of the program�
In most cases� parsing errors are introduced by assumptions made on memory locations�
considering them code when they represent data� Some of these disassemblers comment on
di�erent DOS interrupts� and are able to disassemble not only binary
les� but blocks of
memory and system
les� Commercial disassemblers like Sourcer �Com��� perform several
passes through the binary image� re
ning the symbol table on each pass� and assuring a
better distinction between data and code� An internal simulator is used to resolve indexed
jumps and calls� by keeping track of register contents� Cross�reference information is also
collected by this disassembler�

In decompilation� the disassembler can be considered part of the decompiler by adding an
extra assembler code generator phase� such as in Figure 	��� or can be used as a tool to
generate an assembler program that is taken as the source input program to the decompiler�
such as in the initial Figure 	���

�� Language Independent Bindings

The decompiler generates code for the particular target language it was written for�
Binary programs decompiled with the aid of compiler and library signatures produce target
language programs that use the names of the library routines de
ned in the library signature

le� If the language in which the binary program was originally written in is di�erent to
the target language of the decompiler� the target program cannot be re�compiled for this
language since it uses library routines de
ned in another language�compiler� Consider the
following fragment of decompiled code in C�

WriteString ��Hello Pascal���

CrLf���

These two statements invoke Pascal library routines that implement the original Pascal
statement writeln ��Hello Pascal��� the
rst routine displays the string and the second
performs a carriage return� line feed� In other words� since there is no writeln library

��� Postprocessor ��

�

�

�

�

�

�

�

�
�

�

binary program

Assembler Code Generator

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Control Flow Graph Generator

Data Flow Analysis

Control Flow Analysis

Code Generator

HLL program

assembler program

Figure 	��� Disassembler as part of the Decompiler

routine in the Pascal libraries� this call is replaced by the calls to WriteString and CrLf�
The decompiled code is correct� but since the target language is C� it cannot be re�compiled

given that WriteString and CrLf do not belong to the C library routines�

The previous problem can be solved with the use of Pascal to C bindings for libraries� In
this way� rather than generating the previous two statements� a call to printf is used� as
follows�

printf ��Hello Pascal n���

ISO committee SC of Working Group �� is concerned with the creation of standards
for language independent access to service facilities� This work can be used to de
ne
language independent bindings for languages such as C and Modula�� Information on
library bindings can be placed in a
le and used by the code generator of the decompiler to
produce target code that uses the target language�s library routines�

�� Postprocessor

The quality of the target high�level language program generated by the decompiler can be
improved by a postprocessor phase that replaces generic control structures by language�
speci
c structures� Language�speci
c structures were not considered in the structuring
analysis of Chapter � because these constructs are not general enough to be used across
several languages�

In C� the for�� loop is implemented by a while�� loop that checks for the terminating
condition� The induction variable is initialized before the loop� and is updated each time

�� Decompilation Tools

around the loop in the last statement of the while��� Consider the following code in C
after decompilation�

� loc� 	 ��

� while �loc� � ��

�

� if �loc� !	 �

�

 printf ���d�� loc���

�

� loc� 	 loc� � ��

�

The while�� loop at statement checks the local variable loc� against constant 	� This
variable was initialized in statement �� and is also updated in the last statement of the loop
�i�e� statement ��� therefore� this variable is an induction variable� and the while�� loop
can be replaced by a for loop� leading to the following code�

� for �loc� 	 �� loc� � �� loc� 	 loc� � ��

�

� if �loc� !	 �

�

 printf ���d�� loc���

�

�

which eliminates instructions � and �� replacing them into instruction � Pre and post
increment instructions are used in C as well� hence� the previous code can be improved to
the following�

� for �loc� 	 �� loc� � �� loc����

�

� if �loc� !	 �

�

 printf ���d�� loc���

�

�

A break statement in C terminates the execution of the current loop� branching control to
the
rst instruction that follows the loop� Consider the following code after decompilation�

� loc�	 ��

� while �loc� � ��

�

� printf ���d�� loc���

 if �loc� 		 �

� goto L��

� loc� 	 loc� � ��

�

� L��

��� Postprocessor ��

Instruction � checks local variable loc� against �� and if they are equal� a goto jump is
executed� which transfers control to label L�� the
rst instruction after the loop� This
transfer of control is equivalent to a break� which removes the need for the label and the
goto� Also� the loop is transformed into a for loop� leading to the following code�

� for �loc� 	 �� loc� � �� loc����

�

� printf ���d�� loc���

 if �loc� 		 �

� break�

�

In a similar way� continue statements can be found in the code� If the target language
was Ada� labelled multiexit loops are allowed� These would have been structured by the
decompiler as loops with several goto jump exits out of the loop� The target statements of
these goto jumps can be checked for enclosing loop labels� and replaced by the appropriate
exit loopName statement�

In general� any language�speci
c construct can be represented by the generic set of
constructs used in the structuring algorithm of Chapter �� Section ������ these constructs can
be replaced by a postprocessor� but it is not strictly necessary to do so since the constructs
are functionally equivalent�

Chapter �

dcc

d
cc is a prototype decompiler written in C for the DOS operating system� dcc was initially
developed on a DecStation ���� running Ultrix� and was ported to the PC architecture

under DOS� dcc takes as input �exe and �com
les for the Intel i	�	� architecture� and
produces target C and assembler programs� This decompiler was built using the techniques
described in this thesis �Chapters �������� and 	�� and is composed of the phases shown in
Figure ���� As can be seen� the decompiler has a built�in loader and disassembler� and there
is no postprocessing phase� The following sections describe speci
c aspects about dcc� and
a series of decompiled programs are given in Section ����

�

�

�
�
� �

�

�

�

�

�

�

�

�

Intermediate code

binary program

Parser

Assembler code generation

assembler program

Compiler signatures
Library signatures
Library prototypes

Loader

generator

C program

Semantic analyzer

Data �ow analyzer

Control �ow analyzer

C code generator

generator
Control �ow graph

Figure ���� Structure of the dcc Decompiler

�� dcc

The main decompiler program is shown in Figure ��� with
ve major modules identi
ed�
the initArgs�� which reads the user options from the command line argv�� and places
them in a global program options variable� the Loader�� which reads the binary program
and loads it into memory� the FrontEnd�� which parses the program building a call graph�
the udm�� which analyses the control and data �ow of the program� and the BackEnd��
which generates C code for the di�erent routines in the call graph�

Int main�int argc� char �argv���

� char �filename� �� Binary file name ��

CALL�GRAPH �callGraph� �� Pointer to the program�s call graph ��

filename 	 initArgs�argc� argv��

�� Read a �exe or �com file and load it into memory ��

Loader �filename��

�� Parse the program� generate Icode while building the call graph ��

FrontEnd �filename� !callGraph��

�� Universal Decompiling Machine� process the Icode and call graph ��

udm �callGraph��

�� Generates C for each subroutine in the call graph ��

BackEnd�filename� callGraph��

Figure ��� Main Decompiler Program

The DOS operating system uses a segmented machine representation� Compilers written
for this architecture make use of � di�erent memory models� tiny� small� medium� compact�
large� and huge� Memory models are derived from the choice of ��� or ��bit pointers
for code and data� Appendix A provides information on the i	�	� architecture� and
Appendix B provides information on the PSP� This chapter assumes familiarization with
this architecture�

Decompiler Options

dcc is executed from the command line by specifying the binary
le to be decompiled� For
example� to decompile the
le test�exe the following command is entered�

dcc test�exe

This command produces the test�b
le� which is the target C
le� There are several options
available to the user to get more information on the program� These options are�

�� The Loader ��

� a�� produces an assembler
le after parsing �i�e� before graph optimization��

� a�� produces an assembler
le after graph optimization�

� o �fileName�� uses the fileName as the name for the output assembler
le�

� m� produces a memory map of the program�

� s� produces statistics on the number of basic blocks before and after optimization for
each subroutine�s control �ow graph�

� v� verbose option� displays information on the loaded program �default register values�
image size� etc�� basic blocks of each subroutine�s graph� de
ned and used registers
of each instruction� and the liveIn� liveOut� liveUse� and de
ned register sets of each
basic block�

� V� veryVerbose option� displays the information displayed by the verbose option� plus
information on the program�s relocation table �if any�� basic blocks of the control �ow
graph of each subroutine before graph optimization� and the derived sequence of graphs
of each subroutine�

� i� text user interface for dcc� This interface was written by Michael Van Emmerik
using the curses library� It allows the user to step the program� including subroutine
calls� The right arrow is used to follow jumps and subroutine calls� the left arrow isused
to step back to where you were before using the right arrow� up and down arrows are
used to move up�down a line at a time� page up and page down are used to scroll a
page up or down� and ctrl�X is used to exit the interactive interface�

��� The Loader

The DOS loader is an operating system program called exec� Exec checks for su�cient
available memory to load the program� allocates a block of memory� builds the PSP at its
base� reads the program into the allocated memory block after the PSP� sets up the segment
registers and the stack� and transfers control to the program�Dun		a��

Since the decompiler needs to have control of the program� the exec program was not used�
but a loader that performs a similar task was written� For �exe programs� the program
header is checked for the amount of memory required and the location of the relocation ta�
ble� the size of the image in bytes is dynamically allocated and the program is then loaded
into memory and relocated� For �com programs� the amount of memory required is calcu�
lated from the size of the
le� memory is dynamically allocated� and the program is loaded
into memory as is� The format of these
les is given in Appendix C�

Memory is represented in dcc by an array of bytes� a large enough array is dynamically
allocated once the size of the program�s image is determined� For historical reasons� �com
programs are loaded at o�set ����h� The loader also stores information relating to the
program in a PROG record� de
ned in Figure ���� This record stores not only the information
that was on the binary
le� but also the memory map� and the address �segment� o�set�

�� dcc

where the program was loaded �this address is
xed but dependent on the type of binary
program��

typedef struct �

int�� initCS� �� Initial CS register value ��

int�� initIP� �� Initial IP register value ��

int�� initSS� �� Initial SS register value ��

int�� initSP� �� Initial SP register value ��

boolT fCOM� �� Flag set if COM program �else EXE� ��

Int cReloc� �� ' of relocation table entries ��

dword �relocTable� �� Pointer to relocation table ��

Int cProcs� �� Number of subroutines ��

Int offMain� �� The offset of the main�� proc ��

word segMain� �� The segment of the main�� proc ��

boolT libSigs� �� True if library signatures loaded ��

Int cbImage� �� Length of image in bytes ��

byte �Image� �� Entire program image ��

byte �map� �� Memory bitmap pointer ��

 PROG�

Figure ���� Program Information Record

��� Compiler and Library Signatures

The DOS operating system does not provide a method to share libraries� therefore library
routines are bound to the program�s image� Compiler and library signatures were generated
for several compilers due to this reason� Section ����� explains how they are used in dcc�

An automatic signature generator was written to generate library signatures for standard
�lib
les� as described in Chapter 	� Section 	���� The length of the signature was set to
� bytes� which was proved to be a reasonable size by experimental results� The wildcard
byte was F �the opcode for HALT� since this opcode is rarely used� and the padding byte
was set to ��� Library signatures were generated for the following C compilers� Microsoft
C ���� Microsoft Visual C!! V����� Turbo C ���� and Borland C V���� A separate library
signature
le was used for each triplet of compiler vendor� memory model� and compiler
version� Signatures were generated in a few seconds�

Since automatic signature generation was used� repeated signatures were detected� The
numbers varied from as low as ��� for Turbo C ���� to as high as ��� for Microsoft
Visual C!! V����� In the former case� �� out of ��� routines had repeated signatures�
These were mainly due to identical representation of routines with di�erent names� such
as spawnvp� spawnvpe� spawnve� spawnv� spawnlp� and spawnl� A few signatures were
identical for similar functions� such as tolower and toupper� In only one case unrelated
functions had the same signature� these functions are brk and atoi� In the latter case� ���
out of ��� routines had the same signature� Most of these duplicates were due to internal

�� The Front�end �

public names that are not accessable by the user� such as �CIcosh and �CIfabs� Other sig�
natures use di�erent names for the same routines� especially due to the naming convention
used by di�erent memory models �i�e� the same routine works in di�erent memory models�
�Emm����

Pascal compilers do not use standard library
les� In the case of the Borland Pascal compil�
ers� all library information is stored in a �tpl
le� which has information on library routines
and prototypes� A modi
ed signature generator was written for �tpl
les� and signatures
were generated for Turbo Pascal version ��� and ����

On average� the library signature
les occupy ��Kb of disk space� which is moderate for the
amount of library routines� information stored in them�

Compiler signatures for the above compilers were generated manually and stored as part of
dcc� These signatures are checked for when the parser is
rst invoked�

The implementation of the signature and prototype generator is due to Michael Van
Emmerik while working for the Queensland University of Technology� This work is reported
in �Emm����

���� Library Prototypes

A program called parsehdr was written to parse C library header
les� isolate prototypes�
and store the information about the argument types and the return type to a
le� Proto�
types were generated for the standard libraries used in C�

In the case of Pascal� prototype information is stored as part of the �tpl library
le� These
prototypes were not generated due to missing information regarding the exact structure of
the prototype information�

��� The Front�end

The front�end constructs a call graph of the program while parsing the loaded program in
memory� For each subroutine� the intermediate code and control �ow graph are attached
to the subroutine node in the call graph� hence� the parsing� intermediate code generation�
and the construction of the �ow graph are done in the same pass through the program�s
image� Data information is stored in global and local symbol tables� If the user requests
for disassembly� an assembler
le is written out to a
le with extension �a�� and if the
user requested interactive interface� an interactive window is displayed and the user can
follow the program by stepping through the instructions� Semantic analysis is done last�
followed by the displaying of the bitmap �if user requested�� Figure ��� shows the code for
the FrontEnd�� procedure�

���� The Parser

The parser determines whether the code reached from the entry point provided by the
loader is equivalent to one of the compiler signatures stored in the program� if so� the main
to the program is determined and used as the entry point for the analysis� Whenever a

��� dcc

void FrontEnd �char �filename� CALL�GRAPH �callGraph�

�

�� Parse image while building call graph and generating Icode ��

parse �callGraph��

�� Transform basic block list into a graph ��

constructGraph �callGraph��

�� Check for bytes used as both data and code ��

checkDataCode �callGraph��

if �option�asm�� �� disassembly of the program ��

�

printf ��dcc� writing assembler file &s�a�$n�� filename��

disassemble ��� callGraph� filename��

if �option�Interact� �� interactive option� display window ��

interactWin �callGraph��

�� Idiom analysis ��

semAnalyzer �callGraph��

�� Remove redundancies from the graph ��

compressCFG �callGraph��

if �option�stats� �� statistics on the basic blocks ��

displayStats �callGraph��

if �option�asm�� �� disassembly after graph compression ��

disassemble ��� callGraph� filename��

if �option�map� �� display memory bitmap ��

displayMemMap���

Figure ���� Front�end Procedure

compiler signature is recognized� the associated library signature
le is loaded� The parsing
process is not a�ected in any way if a compiler signature is not found� In these cases� all
code reached from the entry point provided by the loader is decompiled� and no library
routine recognition is done� It is important to point out that some compilers have set�up
routines that are hard to parse since they use indirect jumps� in these cases� the complete
code cannot be parsed� and the decompilation is jeopardized�

�� The Front�end ���

Given the entry point to a subroutine� the parser implements the data�instruction separa�
tion algorithm described in Chapter �� Figure ���� This algorithm recursively follows all
paths from the entry point� and emulates loads into registers �whenever possible�� When
a subroutine call is met� the entry address to the subroutine becomes a new entry point
which is analyzed in a recursive way� placing the subroutine information in the call graph�
Register content is emulated to detect such cases as end of program via interrupts� which
relies on the contents of one or more registers� Programs in which the compiler signature
was recognized are known to be terminated by a routine that is executed after the
nishing
of the main program� hence� emulating the contents of registers in this case is not necessary�
This parser does not make any attempt at recognizing uplevel addressing�

Figure ��� shows the de
nition of the PROC record� which stores information about a sub�
routine� Note that during parsing not all of the
elds are
lled with information� some are
later
lled by the universal decompiling machine�

typedef struct �proc �

Int procEntry� �� label number ��

char name�SYMLEN�� �� Meaningful name for this proc ��

STATE state� �� Entry state ��

flags�� flg� �� Combination of Icode ! Procedure flags ��

int�� cbParam� �� Probable no� of bytes of parameters ��

STKFRAME args� �� Array of formal arguments ��

LOCAL�ID localId� �� Local symbol table ��

ID retVal� �� Return value type �for functions� ��

�� Icodes and control flow graph ��

ICODE�REC Icode� �� Record of ICODE records ��

PBB cfg� �� Pointer to control flow graph �cfg� ��

PBB �dfsLast� �� Array of pointers to BBs in revPostorder ��

Int numBBs� �� Number of basic blocks in the graph cfg ��

boolT hasCase� �� Boolean� subroutine has an n
way node ��

�� For interprocedural live analysis ��

dword liveIn� �� Registers used before defined ��

dword liveOut� �� Registers that may be used in successors ��

boolT liveAnal� �� Procedure has been analysed already ��

 PROC�

Figure ���� Procedure Record

The parser is followed by a checkDataCode�� procedure which checks each byte in the
bitmap for having two �ags� data� and code� in which case the byte position is �agged
as being data and code� and the corresponding subroutine is �agged as potentially using
self�modifying code�

��� dcc

���� The Intermediate Code

The intermediate code used in dcc is called Icode� of which there are two types� low�level
and high�level� The low�level Icode is a mapping of i	�	� machine instructions to assembler
mnemonics� ensuring that every Icode instruction performs one logical instruction only� For
example� the instruction�

DIV bx

assigns to ax the quotient of dx�ax divided by bx� and assigns to dx the reminder of
the previous quotient� hence� two logical instructions are performed by the DIV machine
instruction� In Icode instructions� DIV is separated into two di�erent instructions� iDIV

and iMOD� The former performs the division of the operands� and the latter performs the
modulus of the operands� Since both instructions use the registers that are overwritten
by the result of the instruction �i�e� dx and ax in this example�� these registers need to
be placed in a temporary register before the instructions are performed� dcc uses register
tmp as a temporary register� This register is forward substituted into another instruction
and eliminated during data �ow analysis� The above machine instruction is translated into
three Icode instructions as follows�

iMOV tmp� dx�ax � tmp 	 dx�ax

iDIV bx � ax 	 tmp � bx

iMOD bx � dx 	 tmp � bx

where the dividend of both iDIV and iMOD is set to the tmp register rather than dx�ax�
Figure ��� shows the di�erent machine instructions that are represented by more than one
Icode instruction� An example is given for each instruction�

Machine Instruction Icode Instructions Meaning
DIV cl iMOV tmp� ax tmp � ax

iDIV cl al � tmp � cl
iMOD cl ah � tmp cl

LOOP L iSUB cx� � cx � cx � �
iJNCXZ L cx �� � goto L

LOOPE L iSUB cx� � cx � cx � �
iCMP cx� � cx �� �&
iJZ L zeroFlag �� � goto L
iJNCXZ L if cx �� � goto L

LOOPNE L iSUB cx� � cx � cx � �
iCMP cx� � cx �� �&
iJNE L zeroFlag �� � goto L
iJNCXZ L if cx �� � goto L

XCHG cx� bx iMOV tmp� cx tmp � cx
iMOV cx� bx cx � bx
iMOV bx� tmp bx � tmp

Figure ���� Machine Instructions that Represent more than One Icode Instruction

�� The Front�end ���

Compound instructions such as rep movsb are represented by two di�erent machine instruc�
tions but perform one logical string function� repeat while not end�of�string in this case�
These instructions are represented by one Icode instruction� iREP�MOVS in this example�

Machine instructions that perform low�level tasks� such as input and output from a port�
are most likely never generated by a compiler whilst compiling high�level language code
�i�e� embedded assembler code can make use of these instructions but the high�level code
does not generate these instructions�� These instructions are �agged in the Icode as being
non high�level� and the subroutine that makes use of these instructions is �agged as well so
that assembler is generated for the subroutine� The following instructions are considered
not to be generated by compilers� the instructions marked with an asterisk are sometimes
non high�level� depending on the register operands used�

AAA� AAD� AAM� AAS� CLI� DAA� DAS� �DEC� HLT� IN� �INC� INS�

INT� INTO� IRET� JO� JNO� JP� JNP� LAHF� LOCK� �MOV� OUT� OUTS�

�POP� POPA� POPF� �PUSH� PUSHA� PUSHF� SAHF� STI� �XCHG� XLAT

Icode instructions have a set of Icode �ags associated with them to acknowledge properties
found during the parsing of the instruction� The following �ags are used�

� B� byte operands �default is word operands��

� I� immediate �constant� source operand�

� No Src� no source operand�

� No Ops� no operands�

� Src B� source operand is byte� destination is word�

� Im Ops� implicit operands�

� Im Src� implicit source operand�

� Im Dst� implicit destination operand�

� Seg Immed� instruction has a relocated segment value�

� Not Hll� non high�level instruction�

� Data Code� instruction modi
es data�

� Word O�� instruction has a word o�set �i�e� could be an address��

� Terminates� instruction terminates the program�

� Target� instruction is the target of a jump instruction�

� Switch� current indirect jump determines the start of an n�way statement�

� Synthetic� instruction is a synthetic �i�e� does not exist in the binary
le��

� Float Op� the next instruction is a �oating point instruction�

��	 dcc

dcc implements the mapping of i	�	� machine instructions to low�level Icodes by means
of a static table indexed by machine instruction� which has information on the associated
Icode� used and de
ned condition codes� �ags� and procedures that determine the source
and destination operands �di�erent procedures are used for di�erent operand types� thus�
the same procedures are used by several di�erent instructions�� The mapping of machine
instructions to Icode instructions converts �� instructions into ��	 Icode instructions� This
mapping is shown in Figure ����

���� The Control Flow Graph Generator

dcc implements the construction of the control �ow graph for each subroutine by placing
basic blocks on a list and then converting that list to a proper graph� While parsing� when�
ever an end of basic block instruction is met� the basic block is constructed� and the start
and
nish instruction indexes into the Icode array for that subroutine are stored� Instruc�
tions for which it is not possible to determine where they transfer control to �i�e� indexed
jumps that are not recognized as a known n�way structure header� indirect calls� etc� are
said to terminate the basic block since no more instructions are parsed along the path that
contains that instruction� These nodes are called no�where nodes in dcc� The other types
of basic blocks are the standard ��way� �way� n�way� fall�through� call� and return nodes�
The de
nition record of a basic block is shown in Figure ��	� Most of this information is
later
lled in by the universal decompiling machine�

The control �ow graph of each subroutine is optimized by �ow�of�control optimizations
which remove redundant jumps to jumps� and conditional jumps to jumps� These optimiza�
tions have the potential of removing basic blocks from the graph� therefore the numbering
of the graph is left until all possible nodes are removed from the graph� At the same time�
the predecessors to each basic block are determined and placed in the �inEdges�� array�

���	 The Semantic Analyzer

dcc�s semantic analyzer determines idioms and replaces them with another Icode instruc�
tion�s�� The idioms checked for in dcc are the ones described in Chapter �� Section �����
and grouped into the following categories� subroutine idioms� calling conventions� long vari�
able operations� and miscellaneous idioms�

There is a series of idioms available only in C� In C� a variable can be pre and post incre�
mented� and pre and post decremented� The machine code that represents these instructions
makes use of an extra register to hold the value of the pre or post incremented�decremented
variable when it is being checked against some value�variable� This extra register can be
eliminated by using an idiom to transform the set of instructions into one that uses the
pre�post increment�decrement operand�

In the case of a post increment�decrement variable in a conditional jump� the value of the
variable is copied to a register� the variable then gets incremented or decremented� and

nally� the register that holds the copy of the initial variable �i�e� before increment or
decrement� is compared against the other identi
er� The use of the extra register can be
eliminated by using the post increment�decrement operator available in C� Therefore� these
idioms can be checked for only if code is to be generated in C� Figure ��� shows this case�

�� The Front�end ��

Low�level Instruction Machine Instruction�s�
iAAA ��
iAAD D�
iAAM D�
iAAS �F
iADC ������� �	���	�����������������D���D��
iADD ������� �	���	����������	���	��C���C��
iAND ����� �	���	����������A���A��E���E��
iBOUND �
iCALL E	� FE����FE��� FE����FE�F� FED���FED�� FF����FF���

FF����FF�F� FFD���FFD�
iCALLF �A� FE�	��FE�F� FE�	��FE�F� FED	��FEDF� FF�	��FF�F�

FF�	��FF�F� FFD	��FFDF
iCLC F	
iCLD FC
iCLI FA
iCMC F�
iCMP �	���D� �	���	����	���F�B	��BF�F	��FF�
iCMPS A�� A�
iREPNE CMPS FA�� FA�
iREPE CMPS F�A�� F�A�
iDAA �
iDAS F
iDEC �	���F� FE�	��FE�F� FE		��FE	F� FEC	��FECF� FF�	��FF�F�

FF		��FF	F� FFC	��FFCF
iDIV F�����F���� F�A���F�A�� F�F���F�F�� F�����F���� F�A���F�A��

F�F���F�F�
iMOD F�����F���� F�A���F�A�� F�F���F�F�� F�����F���� F�A���F�A��

F�F���F�F�� F��	��F��F� F�A	��F�AF� F�F	��F�FF� F��	��F��F�
F�A	��F�AF� F�F	��F�FF

iENTER C	
iESC D	��DF
iHLT F�
iIDIV F��	��F��F� F�A	��F�AF� F�F	��F�FF� F��	��F��F� F�A	��F�AF�

F�F	��F�FF
iIMUL ��� �B� F��	��F��F� F�A	��F�AF� F�E	��F�EF� F��	��F��F�

F�A	��F�AF� F�E	��F�EF
iIN E�� E�� EC� ED
iINC ������� FE����FE��� FE	���FE	�� FEC���FEC�� FF����FF���

FF	���FF	�� FFC���FFC�
iINS �C� �D
iREP INS F��C� F��D
iINT CC� CD

Figure ���� Low�level Intermediate Code for the i	�	�

��� dcc

Low�level Instruction Machine Instruction�s�
iINTO CE
iIRET CF
iJB �
iJBE ��
iJAE ��
iJA ��
iJE ��
iJNE ��
iJL �C
iJGE �D
iJLE �E
iJG �F
iJS �	
iJNS ��
iJO ��
iJNO ��
iJP �A
iJNP �B
iJCXZ E�
iJNCXZ E���E
iJMP E�� EB� FE����FE��� FEA���FEA�� FEE���FEE�� FF����FF���

FFA���FFA�� FFE���FFE�
iJMPF EA� FE�	��FE�F� FEA	��FEAF� FEE	��FEEF� FF�	��FF�F�

FFA	��FFAF� FFE	��FFEF
iLAHF �F
iLDS C�
iLEA 	D
iLEAVE C�
iLES C�
iLOCK F�
iLODS AC� AD
iREP LODS F�AC� F�AD
iMOV 		��	C� 	E� A���A�� B���BF� C�� C�
iMOVS A�� A�
iREP MOVS F�A�� F�A�
iMUL F�����F���� F�A���F�A�� F�E���F�E�� F�����F���� F�A���F�A��

F�E���F�E�
iNEG F��	��F��F� F��	��F��F� F�D	��F�DF� F��	��F��F� F��	��F��F�

F�D	��F�DF
iNOT F�����F���� F�����F���� F�D���F�D�� F�����F���� F�����F����

F�D���F�D�
iNOP ��
iOR �	���D� �	���	����	���F�		��	F�C	��CF�

Figure ���� Low�level Intermediate Code for the i	�	� � Continued

�� The Front�end ���

Low�level Instruction Machine Instruction�s�
iOUT E�� E�� EE� EF
iOUTS �E� �F
iREP OUTS F��E� F��F
iPOP ��� ��� �F� �	���F� 	F
iPOPA ��
iPOPF �D
iPUSH ��� �E� ��� �E� ������� �	� �A� FE����FE��� FEB���FEB��

FEF���FEF�� FF����FF��� FFB���FFB�� FFF���FFF�
iPUSHA ��
iPUSHF �C
iRCL �C��C��D���D�����������������D���D��
iRCR �C��C��D���D����	���F��	���F�D	��DF�
iREPE F�
iREPNE F
iRET C� C�
iRETF CA� CB
iROL �C��C��DO��D����������	���	��C���C��
iROR �C��C��D���D����	���F�		��	F�C	��CF�
iSAHF �E
iSAR �C��C��D���D����	���F�B	��BF�F	��FF�
iSHL �C��C��D���D����������A���A��E���E��
iSHR �C��C��D���D����	���F�A	��AF�E	��EF�
iSBB �	���D� �	���	����	���F��	���F�D	��DF�
iSCAS AE� AF
iREPE SCAS F�AE� F�AF
iREPNE SCAS FAE� FAF
iSIGNEX �	� ��
iSTC F�
iSTD FD
iSTI FB
iSTOS AA� AB
iREP STOS F�AA� F�AB
iSUB 	��D� �	���	����	���F�A	��AF�E	��EF�
iTEST 	�� 	�� A	� A�� F�����F���� F�	���F�	�� F�C���F�C�� F�����F����

F�	���F�	�� F�C���F�C�
iWAIT �B
iXCHG 	�� 	�� ������
iXLAT D�
iXOR ������� �	���	����������B���B��F���F��

Figure ���� Low�level Intermediate Code for the i	�	� � Continued

��� dcc

typedef struct �BB �

byte nodeType� �� Type of node ��

Int start� �� First instruction offset ��

Int finish� �� Last instruction in this BB ��

flags�� flg� �� BB flags ��

Int numHlIcodes� �� ' of high
level Icodes ��

�� In edges and out edges ��

Int numInEdges� �� Number of in edges ��

struct �BB ��inEdges� �� Array of pointers to in
edges ��

Int numOutEdges� �� Number of out edges ��

union typeAdr �

dword ip� �� Out edge Icode address ��

struct �BB �BBptr� �� Out edge pointer to successor BB ��

interval �intPtr� �� Out edge pointer to next interval ��

 �outEdges� �� Array of pointers to out
edges ��

�� For interval and derived sequence construction ��

Int beenOnH� �� 'times been on header list H ��

Int inEdgeCount� �� 'inEdges �to find intervals� ��

struct �BB �reachingInt� �� Reaching interval header ��

interval �inInterval� �� Node�s interval ��

interval �correspInt� �� Corresponding interval in Gi
� ��

�� For live register analysis ��

dword liveUse� �� LiveUse�b� ��

dword def� �� Def�b� ��

dword liveIn� �� LiveIn�b� ��

dword liveOut� �� LiveOut�b� ��

�� For structuring analysis ��

Int preorder� �� DFS '� first visit of the node ��

Int revPostorder� �� DFS '� last visit of the node ��

Int immedDom� �� Immediate dominator �revPostorder� ��

Int ifFollow� �� follow node �if node is �
way� ��

Int loopType� �� Type of loop �if any� ��

Int latchNode� �� latching node of the loop ��

Int numBackEdges� �� ' of back edges ��

Int loopFollow� �� node that follows the loop ��

Int caseFollow� �� follow node for n
way node ��

�� Other fields ��

Int traversed� �� Boolean� traversed yet� ��

struct �BB �next� �� Next �initial list link� ��

 BB�

Figure ��	� Basic Block Record

�� The Front�end ��

mov reg� var mov reg� var

inc var or dec var

cmp var� Y cmp var� Y

jX label jX label

�

jcond �var�� X Y� jcond �var

 X Y�

Figure ���� Post�increment or Post�decrement in a Conditional Jump

In a similar way� a pre increment�decrement makes use of an intermediate register� The
variable is
rst incremented�decremented� then it is moved onto a register� which is com�
pared against another identi
er� and then the conditional jump occurs� In this case� the
intermediate register is used because identi
ers other than a register cannot be used in
the compare instruction� This intermediate register can be eliminated by means of a pre
increment�decrement operator� as shown in Figure �����

inc var dec var

mov reg� var or mov reg� var

cmp reg� Y cmp reg� Y

jX lab jX lab

�

jcond ���var X Y� jcond �

var X Y�

Figure ����� Pre Increment�Decrement in Conditional Jump

C�dependent idioms are implemented in dcc� As seen in the general format of these idioms�
a series of low�level Icode instructions is replaced by one high�level jcond instruction� This
instruction is �agged as being a high�level instruction so that it is not processed again by
the data �ow analyzer� Also� all other instructions involved in these idioms are �agged as
not representing high�level instructions�

After idiom recognition� simple type propagation is done on signed integers� signed bytes�
and long variables� When propagating long variables across conditionals� the propagation
modi
es the control �ow graph by removing a node from the graph� as described in
Chapter �� Section ���� Since the high�level condition is determined from the type of
graph� the corresponding high�level jcond instruction is written and that instruction is
�agged as being a high�level instruction�

��� dcc

��� The Disassembler

dcc implements a built�in disassembler that generates assembler
les� The assembly
le
contains only information on the assembler mnemonics of the program �i�e� the code seg�
ment� and does not display any information relating to data� All the information used by
the disassembler is collected by the parser and intermediate code phases of the decompiler�
since there is almost a ��� mapping of low�level Icodes to assembler mnemonics� the assem�
bler code generator is mostly concerned with output formatting�

The disassembler handles one subroutine at a time� given a call graph� the graph is traversed
in a depth�
rst search to generate assembler for nested subroutines
rst� The user has two
options for generating assembler
les� to generate assembler straight after the parsing phase�
and to generate assembler after graph optimization� The former case generates assembler
that is as close as possible to the binary image� the latter case may miss certain jump
instructions that were considered redundant by the graph optimizer� The disassembler is
also used by the decompiler when generating target C code� if a subroutine is �agged as
being a non high�level subroutine� assembler code is generated for that subroutine after
generating the subroutine�s header and comments in C�

��� The Universal Decompiling Machine

The universal decompiling machine �udm� is composed of two phases� the data �ow analysis
phase which transforms the low�level Icode to an optimal high�level Icode representation�
and the control �ow analysis phase which traverses the graph of each subroutine to determine
the bounds of loops and conditionals� these bounds are later used by the code generator�
Figure ���� shows the code for the udm�� procedure�

�
�� Data Flow Analysis

The
rst part of the data �ow analysis is the removal of condition codes� Condition codes
are classi
ed into two sets as follows� the set of condition codes that are likely to have been
generated by a compiler �the HLCC set�� and the set of conditions that are likely to have
been hand�crafted in assembler �the NHLCC set�� From the � condition codes available
in the Intel i	�	��Int	�� �over�ow� direction� interrupt enable� trap� sign� zero� auxiliary
carry� parity and carry�� only � �ags are likely to be high�level� these are� carry� direction�
zero and sign� These �ags are modi
ed by instructions that are likely to be high�level �i�e
the ones that were not �agged as being non high�level�� and thus this set is the one that is
analyzed for condition code removal� From the probable high�level instructions� �� instruc�
tions de
ne �ags in the HLCC set� ranging from � to � �ags de
ned by an instruction� and
� instruction use �ags� normally using one or two �ags per instruction� dcc implements
dead�condition code elimination and condition code propagation� as described in Chapter ��
Sections ���� and ������ These optimizations remove all references to condition codes and
creates jcond instructions that have an associated Boolean conditional expression� This
analysis is overlapped with the initial mapping of all other low�level Icodes to high�level
Icodes in terms of registers� The initial mapping of Icodes is explained in Appendix D�

�
 The Universal Decompiling Machine ���

void udm �CALL�GRAPH �callGraph�

� derSeq �derivedG�

�� Data flow analysis
 optimizations on Icode ��

dataFlow �callGraph��

�� Control flow analysis

 structure the graphs ��

�� Build derived sequences for each subroutine ��

buildDerivedSeq �callGraph� !derivedG��

if �option�VeryVerbose� �� display derived sequence for each subroutine ��

displayDerivedSeq �derivedG��

�� Graph structuring ��

structure �callGraph� derivedG��

Figure ����� Procedure for the Universal Decompiling Machine

The second part of the analysis is the generation of summary information on the operands
of the Icode instructions and basic blocks in the graph� For each subroutine a de
nition�use
and use�de
nition analysis is done� the associated chains are constructed for each instruc�
tion� While constructing these chains� dead�register elimination is performed� as described
in Chapter �� Section ������ Next� an intraprocedural live register analysis is performed for
each subroutine to determine any register arguments used by the subroutine� This analysis
is described in Chapter �� Section ������ Finally� an interprocedural live register analysis is
done next to determine registers that are returned by functions� the analysis is described in
Chapter �� Section ������

Dead�register elimination determines the purpose of the DIV machine instructions� as this
instruction is used for both quotient and remainder of operands� The following intermediate
code

� asgn tmp� dx�ax � ud�tmp� 	 �����

� asgn ax� tmp � bx � ud�ax� 	 ��

� asgn dx� tmp � bx � ud�dx� 	 ��

 asgn �bp
��� dx �� no further use of ax before redefinition ��

determines that register ax is not used before rede
nition as its use�de
nition chain in
instruction is empty� Since this de
nition is dead� the instruction is eliminated� hence
eliminating the division of the operands� and leading to the following code�

� asgn tmp� dx�ax � ud�tmp� 	 �����

� asgn dx� tmp � bx � ud�dx� 	 ��

 asgn �bp
��� dx

��� dcc

All instructions that had instruction in their use�de
nition chain need to be updated to
re�ect the fact that the register is not used any more since it was used to de
ne a dead
register� hence� the ud�� chain in instruction � is updated in this example� leading to the

nal code�

� asgn tmp� dx�ax � ud�tmp� 	 ���

� asgn dx� tmp � bx � ud�dx� 	 ��

 asgn �bp
��� dx

The third and last part of the analysis is the usage of the use�de
nition chains on registers to
perform extended register copy propagation� as described in Chapter �� Section ������� This
analysis removes redundant register references� determines high�level expressions� places ac�
tual parameters on the subroutine�s list� and propagates argument types across subroutine
calls� A temporary expression stack is used throughout the analysis to eliminate the inter�
mediate pseudo high�level instructions push and pop�

In the previous example� forward substitution determines that the initial DIV instruction
was used to determine the modulus between two operands �which are placed in registers
dx�ax and bx in this case��

 asgn �bp
��� dx�ax � bx

�
�� Control Flow Analysis

There are two parts to the control �ow analyzer� the
rst part constructs a derived sequence
of graphs for each subroutine in the call graph and calculates intervals� This sequence is
used by the structuring algorithm to determine the bounds of loops and the nesting level of
such loops� Once the derived sequence of graphs is built for the one subroutine� the graph
is tested for reducibility� if the limit n�th order graph is not a trivial graph� the subroutine
is irreducible�

The second part of the analysis is the structuring of the control �ow graphs of the program�
The structuring algorithm determines the bounds of loops and conditionals ��way and n�
way structures�� these bounds are later used during code generation� Loops are structured
by means of intervals� and their nesting level is determined by the order in which they are
found in the derived sequence of graphs� as described in Chapter �� Section ������ Pre�
tested� post�tested and endless loops are determined by this algorithm� Conditionals are
structured by means of a reverse traversal of the depth�
rst search tree of the graph� in
this way nested conditionals are found
rst� The method for structuring �way and n�way
conditionals is described in Chapter �� Sections ���� and ������ This method takes into
account compound Boolean conditions� and removes some nodes from the graph by storing
the Boolean conditional information of two or more nodes in the one node�

��� The Back�end

The back�end is composed in its entirety of the C code generator� This module opens the
output
le and gives it an extension �b �b for beta�� writes the program header to it� and

�� The Back�end ���

then invokes the code generator� Once code has been generated for the complete graph� the

le is closed� Figure ��� shows code for the back�end procedure�

void BackEnd �char �fileName� CALL�GRAPH �callGraph�

� FILE �fp� �� Output C file ��

�� Open output file with extension �b ��

openFile �fp� filename� ��b�� �wt���

printf ��dcc� Writing C beta file &s�b$n�� fileName��

�� Header information ��

writeHeader �fp� fileName��

�� Process each procedure at a time ��

writeCallGraph �fileName� callGraph� fp��

�� Close output file ��

fclose �fp��

printf ��dcc� Finished writing C beta file$n���

Figure ���� Back�end Procedure

���� Code Generation

dcc implements the C code generator described in Chapter �� Section ���� The program�s
call graph is traversed in a depth�
rst fashion to generate C code for the leaf subroutines

rst �i�e� in reverse invocation order if the graph is reducible�� For each subroutine� code for
the control �ow graph is generated according to the structures in the graph� the bounds of
loops and conditional structures have been marked in the graph by the structuring phase�
Code is generated in a recursive way� so if a node is reached twice along the recursion� a
goto jump is used to transfer control to the code associated with such a node�

Since registers that are found in leaves of an expression are given a name during code gener�
ation �i�e� after all local variables have been de
ned in the local variable de
nition section��
and instructions for which code has been generated may have a label associated with them
if a goto jump is generated later on� code cannot be generated directly to a
le but needs
to be stored in an intermediate data structure until the code for a complete subroutine
has been generated� then it can be copied to the target output
le� and the structure is
reused for the next subroutine in the call graph� The data structure used by dcc to handle
subroutine declarations and code is called a bundle� A bundle is composed of two arrays
of lines� one for subroutine declarations� and the other for the subroutine code� Subroutine
declarations include not only the subroutine header� but also the comments and the local
variable de
nitions� The array of lines can grow dynamically if the initial allocated array
size is too small� The de
nition of the bundle data structure is shown in Figure �����

��	 dcc

typedef struct �

Int numLines� �� Number of lines in the table ��

Int allocLines� �� Number of lines allocated in the table ��

char ��str� �� Table of strings ��

 strTable�

typedef struct �

strTable decl� �� Declarations ��

strTable code� �� C code ��

 bundle�

Figure ����� Bundle Data Structure De
nition

The comments and error messages displayed by dcc are listed in Appendix E�

��	 Results

This section presents a series of programs decompiled by dcc� The original programs were
written in C� and compiled with Borland Turbo C under DOS� These programs make use
of base type variables �i�e� byte� integer and long�� and illustrate di�erent aspects of the
decompilation process� These programs were run in batch mode� generating the disassembly

le �a�� the C
le �b� the call graph of the program� and statistics on the intermediate code
instructions� The statistics re�ect the percentage of intermediate instruction reduction on
all subroutines for which C is generated� subroutines which translate to assembler are not
considered in the statistics� For each program� a total count on low�level and high�level
instructions� and a total percentage reduction is given�

The
rst three programs illustrate operations on the di�erent three base types� The original
C programs have the same code� but their variables have been de
ned as a di�erent
type� The next four programs are benchmark programs from the Plum�Hall benchmark
suite� These programs were written by Eric S� Raymond and are freely available on the
network �Ray	��� These programs were modi
ed to ask for the arguments to the program
with scanf�� rather than scanning for them in the argv�� command line array since arrays
are not supported by dcc� Finally� the last three programs calculate Fibonacci numbers�
compute the cyclic redundancy check �CRC� for a character� and multiply two matrixes�
This last program is introduced to show how array expressions are derived from the low�level
intermediate code�

���� Intops�exe

Intops is a program that computes di�erent operations on two integer variables� and displays
the
nal result of these variables� The disassembly C program is shown in Figure ����� the
decompiled C program in Figure ����� and the initial C program in Figure ����� The
program has the following call graph�

�� Results ��

main

printf

As can be seen in the disassembly of the program� the second variable was placed in register
si� and the
rst variable was placed on the stack at o�set
�� Synthetic instructions were
generated by the parser for the IDIV machine instruction� this instruction was used as a
division in one case� and as a modulus in the other� The intermediate code makes use of the
temporary register tmp� as previously explained in Section ����� this register is eliminated
during data �ow analysis� For each operation� the operands of the instruction are moved
to registers� the operation is performed on registers� and the result is placed back on the
variables� There are no control structures in the program� The idioms and data �ow analyses
reduce the number of intermediate instructions by ����	 � as shown in Figure �����

��� dcc

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� �

��� ������ � PUSH si

��� ������ C���FEFF�� MOV word ptr �bp
��� �FFh

�� ������ BE�F�� MOV si� �Fh

��� ������ �B��FE MOV ax� �bp
��

��� �����C ��C� ADD ax� si

��� �����E �BF� MOV si� ax

��� ������ �B��FE MOV ax� �bp
��

��� ������ �BC� SUB ax� si

��� ����� ����FE MOV �bp
��� ax

��� ������ �B��FE MOV ax� �bp
��

��� �����B F�E� MUL si

��� �����D ����FE MOV �bp
��� ax

�� ������ �BC� MOV ax� si

��� ������ �� CWD

��� MOV tmp� dx�ax �Synthetic inst

��� ������ F��EFE IDIV word ptr �bp
��

��� MOD word ptr �bp
�� �Synthetic inst

��� ������ �BF� MOV si� ax

��� ������ �BC� MOV ax� si

��� �����A �� CWD

��� MOV tmp� dx�ax �Synthetic inst

��� �����B F��EFE IDIV word ptr �bp
��

�� MOD word ptr �bp
�� �Synthetic inst

��� �����E �BF� MOV si� dx

��� ������ �B��FE MOV ax� �bp
��

��� ������ B�� MOV cl�

��� ����� D�E� SHL ax� cl

��� ������ ����FE MOV �bp
��� ax

��� �����A �BC� MOV ax� si

��� �����C �A�EFE MOV cl� �bp
��

��� �����F D�F� SAR ax� cl

��� ������ �BF� MOV si� ax

�� ������ � PUSH si

��� ������ FF��FE PUSH word ptr �bp
��

��� ������ B����� MOV ax� ���h

��� �����A � PUSH ax

��� �����B E�AC�� CALL near ptr printf

��� �����E ��C��� ADD sp� �

��� ����� E POP si

��� ����� �BE MOV sp� bp

��� ����� D POP bp

��� ���� C� RET

main ENDP

Figure ����� Intops�a

�� Results ���

��

� Input file � intops�exe

� File type � EXE

��

'include �dcc�h�

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

loc� 	 ��

loc� 	 ����

loc� 	 �loc� � loc���

loc� 	 �loc�
 loc���

loc� 	 �loc� � loc���

loc� 	 �loc� � loc���

loc� 	 �loc� & loc���

loc� 	 �loc� ## ��

loc� 	 �loc� "" loc���

printf ��a 	 &d� b 	 &d$n�� loc�� loc���

Figure ����� Intops�b

��� dcc

'define TYPE int

main��

� TYPE a� b�

a 	 ��

b 	 ����

b 	 a � b�

a 	 a
 b�

a 	 a � b�

b 	 b � a�

b 	 b & a�

a 	 a ## �

b 	 b "" a�

printf ��a 	 &d� b 	 &d$n�� a� b��

Figure ����� Intops�c

Subroutine Low�level High�level Reduction
main �� �� ����	
total �� �� ����	

Figure ����� Intops Statistics

�� Results ��

���� Byteops�exe

Byteops is a similar program to intops� with the di�erence that the two variables are bytes
rather than integers� The disassembly program is shown in Figure ���	� the decompiled
C version in Figure ����� and the initial C program in Figure ���� The program has the
following call graph�

main

printf

As can be seen in the disassembly of the program� the local variables are placed on the stack
at o�sets
� and
�� There are ��� more instructions in this program when compared
against the intops�a program since some machine instructions such as IDIV take word
registers as operands rather than byte registers� hence� the byte registers are either padded
or sign�extended to form a word register� The
nal number of high�level instructions is the
same in both programs� hence the reduction in the number of intermediate instructions is
greater in this program� It reached 	��� � as shown in Figure ����

��� dcc

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� �

��� ������ C���FEFF MOV byte ptr �bp
��� �FFh

��� ������ C���FF�F MOV byte ptr �bp
��� �Fh

�� ������ �A��FE MOV al� �bp
��

��� �����B ����FF ADD al� �bp
��

��� �����E ����FF MOV �bp
��� al

��� ������ �A��FE MOV al� �bp
��

��� ������ �A��FF SUB al� �bp
��

��� ������ ����FE MOV �bp
��� al

��� �����A �A��FE MOV al� �bp
��

��� �����D B��� MOV ah� �

��� �����F �A�FF MOV dl� �bp
��

��� ������ B��� MOV dh� �

�� ������ F�E� MUL dx

��� ������ ����FE MOV �bp
��� al

��� ������ �A��FF MOV al� �bp
��

��� �����C B��� MOV ah� �

��� �����E �A�FE MOV dl� �bp
��

��� ������ B��� MOV dh� �

��� ������ �BDA MOV bx� dx

��� ����� �� CWD

��� MOV tmp� dx�ax �Synthetic inst

��� ������ F�FB IDIV bx

�� MOD bx �Synthetic inst

��� ������ ����FF MOV �bp
��� al

��� �����B �A��FF MOV al� �bp
��

��� �����E B��� MOV ah� �

��� ������ �A�FE MOV dl� �bp
��

��� ������ B��� MOV dh� �

��� ����� �BDA MOV bx� dx

��� ������ �� CWD

��� MOV tmp� dx�ax �Synthetic inst

��� ������ F�FB IDIV bx

�� MOD bx �Synthetic inst

��� �����A ���FF MOV �bp
��� dl

��� �����D �A��FE MOV al� �bp
��

��� ����� B�� MOV cl�

��� ����� D�E� SHL al� cl

��� ����� ����FE MOV �bp
��� al

��� ����� �A��FF MOV al� �bp
��

��� ����A �A�EFE MOV cl� �bp
��

��� ����D D�E� SHR al� cl

��� ����F ����FF MOV �bp
��� al

Figure ���	� Byteops�a

�� Results ���

�� ������ �A��FF MOV al� �bp
��

��� ����� B��� MOV ah� �

��� ������ � PUSH ax

��� ������ �A��FE MOV al� �bp
��

��� �����B B��� MOV ah� �

�� �����D � PUSH ax

�� �����E B����� MOV ax� ���h

�� ������ � PUSH ax

�� ������ E�AB�� CALL near ptr printf

�� ����� ��C��� ADD sp� �

� ������ �BE MOV sp� bp

�� �����A D POP bp

�� �����B C� RET

main ENDP

Figure ���	� Byteops�a � Continued

��� dcc

��

� Input file � byteops�exe

� File type � EXE

��

'include �dcc�h�

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

loc� 	 ��

loc� 	 ����

loc� 	 �loc� � loc���

loc� 	 �loc�
 loc���

loc� 	 �loc� � loc���

loc� 	 �loc� � loc���

loc� 	 �loc� & loc���

loc� 	 �loc� ## ��

loc� 	 �loc� "" loc���

printf ��a 	 &d� b 	 &d$n�� loc�� loc���

Figure ����� Byteops�b

�� Results ���

'define TYPE unsigned char

main��

� TYPE a� b�

a 	 ��

b 	 ����

b 	 a � b�

a 	 a
 b�

a 	 a � b�

b 	 b � a�

b 	 b & a�

a 	 a ## �

b 	 b "" a�

printf ��a 	 &d� b 	 &d$n�� a� b��

Figure ���� Byteops�c

Subroutine Low�level High�level Reduction
main �	 �� 	���
total �	 �� 	���

Figure ���� Byteops Statistics

��	 dcc

���� Longops�exe

The longops programs is similar to the intops and byteops programs� but makes use of
two long variables� The disassembly program is shown in Figure ��� the decompiled C
program in Figure ���� and the initial C program in Figure ���� The program has the
following call graph�

main

LXMUL'

LDIV'

LMOD'

LXLSH'

LXRSH'

printf

Operations performed on long variables make use of idioms and run�time support routines of
the compiler� In this program� long addition and subtraction are performed by the idioms
of Chapter �� Section ����� and the run�time routines LXMUL'� LDIV'� LMOD'� LXLSH'�
and LXRSH' are used for long multiplication� division� modulus� left�shift� and right�shift
accordingly� From these run�time routines� long multiplication� left�shift� and right�shift are
translatable into C� macros are used to access the low or high part of a variable in some cases�
The division and modulus routines are untranslatable into C� so assembler is generated for
them� The long variables are placed on the stack at o�sets
 and
� �see main subroutine��
The main program has 	��� more instructions than the intops program� and ��� more
instructions than the byteops program� The increase in the number of instructions has two
causes�
rst� the transfer of long variables to registers now takes two instructions rather
than one �i�e� the high and low part are transfered to di�erent registers�� and second�
the subroutine call instructions to run�time support routines� The
nal decompiled main

program still generates the same number of high�level instructions as in the previous two
programs� with a reduction in the number of intermediate instructions of 	���� � as shown
in Figure ���� Overall� the reduction in the number of instructions is �	��� � which is low
due to the run�time routines that were translated to C� which did not make use of a lot of
register movement since the arguments were in registers and these routines were initially
written in assembler�

�� Results ��

LXRSH� PROC FAR

��� ������ ��F��� CMP cl� ��h

��� �����C ���� JAE L�

��� �����E �BDA MOV bx� dx

��� ������ D�E� SHR ax� cl

��� ������ D�FA SAR dx� cl

�� ������ F�D� NEG cl

��� ������ ��C��� ADD cl� ��h

��� ������ D�E� SHL bx� cl

��� �����B �BC� OR ax� bx

��� �����D CB RETF

��� �����E ��E��� L�� SUB cl� ��h

��� ������ �BC� MOV ax� dx

��� ������ �� CWD

��� ������ D�F� SAR ax� cl

��� ������ CB RETF

LXRSH� ENDP

LXLSH� PROC FAR

��� ������ ��F��� CMP cl� ��h

��� �����A ���� JAE L�

��� �����C �BD� MOV bx� ax

��� �����E D�E� SHL ax� cl

��� ������ D�E� SHL dx� cl

�� ������ F�D� NEG cl

��� ������ ��C��� ADD cl� ��h

��� ������ D�EB SHR bx� cl

��� ������ �BD� OR dx� bx

��� �����B CB RETF

��� �����C ��E��� L�� SUB cl� ��h

��� �����F �BD� MOV dx� ax

��� ����A� ��C� XOR ax� ax

��� ����A� D�E� SHL dx� cl

��� ����A CB RETF

LXLSH� ENDP

LMOD� PROC FAR

��� ����CF B����� MOV cx� �

��� ����D� PUSH bp

��� ����D� � PUSH si

��� ����D� � PUSH di

�� ����DA �BEC MOV bp� sp

��� ����DC �BF� MOV di� cx

��� ����DE �B���A MOV ax� �bp��Ah�

��� ����E� �B��C MOV dx� �bp��Ch�

��� ����E� �BE�E MOV bx� �bp��Eh�

Figure ��� Longops�a

��� dcc

��� ����E� �B�E�� MOV cx� �bp���h�

��� ����EA �BC� OR cx� cx

��� ����EC ��� JNE L�

��� ����EE �BD� OR dx� dx

��� ����F� ���� JE L�

�� ����F� �BDB OR bx� bx

��� ����F� ��� JE L�

��� ����F� F�C����� L�� TEST di� �

��� ����FA ��C JNE L

��� ����FC �BD� OR dx� dx

��� ����FE ���A JNS L�

��� ������ F�DA NEG dx

��� ������ F�D� NEG ax

��� ������ ��DA�� SBB dx� �

��� ������ ��CF�C OR di� �Ch

�� �����A �BC� L�� OR cx� cx

��� �����C ���A JNS L

��� �����E F�D� NEG cx

��� ������ F�DB NEG bx

��� ������ ��D��� SBB cx� �

��� ����� ��F��� XOR di� �

��� ������ �BE� L� MOV bp� cx

��� �����A B����� MOV cx� ��h

��� �����D � PUSH di

��� �����E ��FF XOR di� di

�� ������ ��F� XOR si� si

��� ������ D�E� L�� SHL ax� �

��� ������ D�D� RCL dx� �

��� ������ D�D� RCL si� �

��� ������ D�D� RCL di� �

��� �����A �BFD CMP di� bp

��� �����C ���B JB L�

��� �����E ���� JA L�

��� ������ �BF� CMP si� bx

��� ������ ��� JB L�

�� ������ �BF� L�� SUB si� bx

��� ������ �BFD SBB di� bp

��� ������ �� INC ax

��� ������ E�E� L�� LOOP L�

��� �����B B POP bx

�� �����C F�C����� TEST bx� �

�� ������ ���� JE L��

�� ������ �BC� MOV ax� si

�� ������ �BD� MOV dx� di

�� ������ D�EB SHR bx� �

Figure ��� Longops�a � Continued

�� Results ���

� ������ F�C����� L��� TEST bx� �

�� �����C ���� JE L��

�� �����E F�DA NEG dx

�� ����� F�D� NEG ax

�� ����� ��DA�� SBB dx� �

��� ���� F L��� POP di

��� ����� E POP si

��� ����� D POP bp

��� ����� CA���� RETF �

��� L�� MOV tmp� dx�ax �Synthetic inst

�� ����B F�F� DIV bx

��� MOD bx �Synthetic inst

��� ����D F�C����� TEST di� �

��� ������ ���� JE L��

��� ������ �BC� MOV ax� dx

��� ����� ��D� L��� XOR dx� dx

��� ������ EBEC JMP L��

LMOD� ENDP

LDIV� PROC FAR

��� ����C� ��C� XOR cx� cx

��� ����D� PUSH bp

��� ����D� � PUSH si

��� ����D� � PUSH di

�� ����DA �BEC MOV bp� sp

��� ����DC �BF� MOV di� cx

��� ����DE �B���A MOV ax� �bp��Ah�

��� ����E� �B��C MOV dx� �bp��Ch�

��� ����E� �BE�E MOV bx� �bp��Eh�

��� ����E� �B�E�� MOV cx� �bp���h�

��� ����EA �BC� OR cx� cx

��� ����EC ��� JNE L��

��� ����EE �BD� OR dx� dx

��� ����F� ���� JE L��

�� ����F� �BDB OR bx� bx

��� ����F� ��� JE L��

��� ����F� F�C����� L��� TEST di� �

��� ����FA ��C JNE L�

��� ����FC �BD� OR dx� dx

��� ����FE ���A JNS L��

��� ������ F�DA NEG dx

��� ������ F�D� NEG ax

��� ������ ��DA�� SBB dx� �

��� ������ ��CF�C OR di� �Ch

�� �����A �BC� L��� OR cx� cx

Figure ��� Longops�a � Continued

��� dcc

��� �����C ���A JNS L�

��� �����E F�D� NEG cx

��� ������ F�DB NEG bx

��� ������ ��D��� SBB cx� �

��� ����� ��F��� XOR di� �

��� ������ �BE� L�� MOV bp� cx

��� �����A B����� MOV cx� ��h

��� �����D � PUSH di

��� �����E ��FF XOR di� di

�� ������ ��F� XOR si� si

��� ������ D�E� L��� SHL ax� �

��� ������ D�D� RCL dx� �

��� ������ D�D� RCL si� �

��� ������ D�D� RCL di� �

��� �����A �BFD CMP di� bp

��� �����C ���B JB L��

��� �����E ���� JA L��

��� ������ �BF� CMP si� bx

��� ������ ��� JB L��

�� ������ �BF� L��� SUB si� bx

��� ������ �BFD SBB di� bp

��� ������ �� INC ax

��� ������ E�E� L��� LOOP L��

��� �����B B POP bx

�� �����C F�C����� TEST bx� �

�� ������ ���� JE L��

�� ������ �BC� MOV ax� si

�� ������ �BD� MOV dx� di

�� ������ D�EB SHR bx� �

� ������ F�C����� L��� TEST bx� �

�� �����C ���� JE L��

�� �����E F�DA NEG dx

�� ����� F�D� NEG ax

�� ����� ��DA�� SBB dx� �

��� ���� F L��� POP di

��� ����� E POP si

��� ����� D POP bp

��� ����� CA���� RETF �

��� L��� MOV tmp� dx�ax �Synthetic inst

�� ����B F�F� DIV bx

��� MOD bx �Synthetic inst

��� ����D F�C����� TEST di� �

��� ������ ���� JE L��

��� ������ �BC� MOV ax� dx

��� ����� ��D� L��� XOR dx� dx

��� ������ EBEC JMP L��

LDIV� ENDP

Figure ��� Longops�a � Continued

�� Results ��

LXMUL� PROC FAR

��� ����C� � PUSH si

��� MOV tmp� ax �Synthetic inst

��� MOV ax� si �Synthetic inst

��� MOV si� tmp �Synthetic inst

��� MOV tmp� ax �Synthetic inst

�� MOV ax� dx �Synthetic inst

��� MOV dx� tmp �Synthetic inst

��� ����C� �C� TEST ax� ax

��� ����C� ���� JE L��

��� ����CA F�E� MUL bx

��� L��� MOV tmp� ax �Synthetic inst

��� MOV ax� cx �Synthetic inst

��� MOV cx� tmp �Synthetic inst

��� ����CD �C� TEST ax� ax

��� ����CF ���� JE L��

�� ����D� F�E� MUL si

��� ����D� ��C� ADD cx� ax

��� L��� MOV tmp� ax �Synthetic inst

��� MOV ax� si �Synthetic inst

��� MOV si� tmp �Synthetic inst

��� ����D� F�E� MUL bx

��� ����D� ��D� ADD dx� cx

��� ����DA E POP si

��� ����DB CB RETF

LXMUL� ENDP

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� �

��� ������ C���FA���� MOV word ptr �bp
��� �

��� ����� C���F�FF�� MOV word ptr �bp
��� �FFh

�� �����A C���FE���� MOV word ptr �bp
��� �

��� �����F C���FC�F�� MOV word ptr �bp
��� �Fh

��� ������ �B�FA MOV dx� �bp
��

��� ������ �B��F� MOV ax� �bp
��

��� �����A ����FC ADD ax� �bp
��

��� �����D ���FE ADC dx� �bp
��

��� ������ ���FE MOV �bp
��� dx

��� ������ ����FC MOV �bp
��� ax

��� ������ �B�FA MOV dx� �bp
��

��� ������ �B��F� MOV ax� �bp
��

�� �����C �B��FC SUB ax� �bp
��

��� �����F �B�FE SBB dx� �bp
��

��� ������ ���FA MOV �bp
��� dx

Figure ��� Longops�a � Continued

��� dcc

��� ����� ����F� MOV �bp
��� ax

��� ������ �B�FA MOV dx� �bp
��

��� �����B �B��F� MOV ax� �bp
��

��� �����E �B�EFE MOV cx� �bp
��

��� ������ �BEFC MOV bx� �bp
��

��� ������ �AC������� CALL far ptr LXMUL�

��� ������ ���FA MOV �bp
��� dx

�� �����C ����F� MOV �bp
��� ax

��� �����F FF��FA PUSH word ptr �bp
��

��� ����� FF��F� PUSH word ptr �bp
��

��� ���� FF��FE PUSH word ptr �bp
��

��� ����� FF��FC PUSH word ptr �bp
��

��� ����B �AC������� CALL far ptr LDIV�

��� ������ ���FE MOV �bp
��� dx

��� ������ ����FC MOV �bp
��� ax

��� ������ FF��FA PUSH word ptr �bp
��

��� ������ FF��F� PUSH word ptr �bp
��

�� �����C FF��FE PUSH word ptr �bp
��

��� �����F FF��FC PUSH word ptr �bp
��

��� ������ �ACF������ CALL far ptr LMOD�

��� ������ ���FE MOV �bp
��� dx

��� �����A ����FC MOV �bp
��� ax

��� �����D �B�FA MOV dx� �bp
��

��� ������ �B��F� MOV ax� �bp
��

��� ������ B�� MOV cl�

��� ����� �A�������� CALL far ptr LXLSH�

��� �����A ���FA MOV �bp
��� dx

�� �����D ����F� MOV �bp
��� ax

��� ������ �B�FE MOV dx� �bp
��

��� ������ �B��FC MOV ax� �bp
��

��� ������ �A�EF� MOV cl� �bp
��

��� ������ �A�������� CALL far ptr LXRSH�

�� �����E ���FE MOV �bp
��� dx

�� ����A� ����FC MOV �bp
��� ax

�� ����A� FF��FE PUSH word ptr �bp
��

�� ����A� FF��FC PUSH word ptr �bp
��

�� ����AA FF��FA PUSH word ptr �bp
��

� ����AD FF��F� PUSH word ptr �bp
��

�� ����B� B����� MOV ax� ���h

�� ����B� � PUSH ax

�� ����B� E�C��� CALL near ptr printf

�� ����B� ��C��A ADD sp� �Ah

��� ����BA �BE MOV sp� bp

��� ����BC D POP bp

��� ����BD C� RET

main ENDP

Figure ��� Longops�a � Continued

�� Results ���

��

� Input file � longops�exe

� File type � EXE

��

'include �dcc�h�

long LXMUL� �long arg�� long arg��

�� Uses register arguments�

� arg� 	 dx�ax�

� arg� 	 cx�bx�

� Runtime support routine of the compiler�

��

�

int loc��

int loc�� �� tmp ��

loc� 	 LO�arg���

LO�arg�� 	 loc��

loc� 	 loc��

loc� 	 LO�arg���

LO�arg�� 	 HI�arg���

if ��LO�arg�� ! LO�arg��� �	 �� �

LO�arg�� 	 �LO�arg�� � LO�arg����

loc� 	 LO�arg���

LO�arg�� 	 HI�arg���

HI�arg�� 	 loc��

if ��LO�arg�� ! LO�arg��� �	 �� �

LO�arg�� 	 �LO�arg�� � loc���

HI�arg�� 	 �HI�arg�� � LO�arg����

loc� 	 LO�arg���

LO�arg�� 	 loc��

loc� 	 loc��

arg� 	 �LO�arg�� � LO�arg����

HI�arg�� 	 �HI�arg�� � HI�arg����

return �arg���

Figure ���� Longops�b

��� dcc

long LDIV� �long arg�� long arg��

�� Takes � bytes of parameters�

� Runtime support routine of the compiler�

� Untranslatable routine� Assembler provided�

� Return value in registers dx�ax�

� Pascal calling convention�

��

�

�� disassembly code here ��

long LMOD� �long arg�� long arg��

�� Takes � bytes of parameters�

� Runtime support routine of the compiler�

� Untranslatable routine� Assembler provided�

� Return value in registers dx�ax�

� Pascal calling convention�

��

�

�� disassembly code here ��

long LXLSH� �long arg�� char arg��

�� Uses register arguments�

� arg� 	 dx�ax�

� arg� 	 cl�

� Runtime support routine of the compiler�

��

�

int loc�� �� bx ��

if �arg� # ��� �

loc� 	 LO�arg���

LO�arg�� 	 �LO�arg�� ## arg���

HI�arg�� 	 �HI�arg�� ## arg���

HI�arg�� 	 �HI�arg�� % �loc� "" ��arg� � ������

return �arg���

else �

HI�arg�� 	 LO�arg���

LO�arg�� 	 ��

HI�arg�� 	 �HI�arg�� ## �arg�
 �����

return �arg���

Figure ���� Longops�b � Continued

�� Results ���

long LXRSH� �long arg�� char arg��

�� Uses register arguments�

� arg� 	 dx�ax�

� arg� 	 cl�

� Runtime support routine of the compiler�

��

�

int loc�� �� bx ��

if �arg� # ��� �

loc� 	 HI�arg���

LO�arg�� 	 �LO�arg�� "" arg���

HI�arg�� 	 �HI�arg�� "" arg���

LO�arg�� 	 �LO�arg�� % �loc� ## ��arg� � ������

return �arg���

else �

arg� 	 HI�arg���

LO�arg�� 	 �LO�arg�� "" �arg�
 �����

return �arg���

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

long loc��

long loc��

loc� 	 ��

loc� 	 ����

loc� 	 �loc� � loc���

loc� 	 �loc�
 loc���

loc� 	 LXMUL� �loc�� loc���

loc� 	 LDIV� �loc�� loc���

loc� 	 LMOD� �loc�� loc���

loc� 	 LXLSH� �loc�� ��

loc� 	 LXRSH� �loc�� loc���

printf ��a 	 &ld� b 	 &ld$n�� loc�� loc���

Figure ���� Longops�b � Continued

��	 dcc

'define TYPE long

main��

� TYPE a� b�

a 	 ��

b 	 ����

b 	 a � b�

a 	 a
 b�

a 	 a � b�

b 	 b � a�

b 	 b & a�

a 	 a ## �

b 	 b "" a�

printf ��a 	 &ld� b 	 &ld$n�� a� b��

Figure ���� Longops�c

Subroutine Low�level High�level Reduction
LXMUL' � �� ��	�
LDIV' � � �
LMOD' � � �
LXLSH' �� �� �����
LXRSH' �� � �����
main �� �� 	����
total ��� �	 �	���

Figure ���� Longops Statistics

�� Results ��

���	 Benchsho�exe

Benchsho is a program from the Plum�Hall benchmark suite� which benchmarks short
integers� The program makes use of two long variables to iterate through the loop� and
three �short� integer variables to execute ���� operations� The disassembly program is
shown in Figure ���� the decompiled C program in Figure ��	� and the initial C program
in Figure ���� The program has the following call graph�

main

scanf

printf

As seen in the disassembly of the program� the long variables are located in the stack at
o�sets
 and
�� and the integer variables are located at o�sets
��
��� and
��� The

nal C code makes use of the integer variable loc� to hold the result of a Boolean expression
�i�e� � or �� and assign it to the corresponding variable� This Boolean variable is a register
variable �register ax� and could have been eliminated from the code with further analysis
of the control �ow graph� in a similar way to the structuring of compound conditions�

locX � ax�
�� no further use of ax ��

�� other code ��

�

�������
PPPPPPq

PPPPPPPq

��������

�

�

�� no further use of ax ��

�

�� other code ��
�Boolean expression

ax � � ax � �

� 	

�

�

�b��a�

�

�

locX � �Boolean expression �

Figure ���� Control Flow Graph for Boolean Assignment

For example� graph �a� in Figure ��� can be reduced to graph �b� if the following conditions
are satis
ed�

�� Node � is a �way node�

� Nodes and � have one in�edge from node � only� and lead to a common node ��

�� Nodes and � have one instruction only� This instruction assigns � and � respectively
to a register�

�� Node � assigns the register of nodes and � to a local variable� The register is not
further used before rede
nition in the program�

Since the register is used only once to store the intermediate result of a Boolean expression
evaluation� it is eliminated from the
nal code by assigning the Boolean expression to the

��� dcc

target variable� This transformation not only removes the involved register� but also the
two nodes that assigned a value to it �i�e� nodes and � in the graph of Figure �����

It is clear that the two Boolean assignments of Figure ��	 can be transformed into the
following code�

loc� 	 �loc� 		 loc���

�� other code ��

loc� 	 �loc� � loc���

which would make the
nal C program an exact decompilation of the original C program�
Without this transformation� the generated C code is functionally equivalent to the initial
C code� and structurally equivalent to the decompiled graph� Since the graph of a Boolean
assignment is structured by nature� the non�implementation of this transformation does not
generate unstructured code in any way� unlike the case of compound conditions� which are
unstructured graphs by nature that are transformed into structured graphs�

Without the graph optimization� the
nal decompiled code generated by dcc produces a
���� reduction on the number of intermediate instructions� as shown in Figure ����� For
each Boolean assignment of the initial C code� there are three extra instructions due to the
use of a temporary local variable �loc� in this case��

�� Results ���

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�E SUB sp� �Eh

��� ������ �D��FC LEA ax� �bp
��

��� ������ � PUSH ax

�� ������ B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E�E��� CALL near ptr scanf

��� �����B � POP cx

��� �����C � POP cx

��� �����D FF��FE PUSH word ptr �bp
��

��� ������ FF��FC PUSH word ptr �bp
��

��� ������ B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E���C CALL near ptr printf

�� �����A ��C��� ADD sp� �

��� �����D �D��F� LEA ax� �bp
�Eh�

��� ������ � PUSH ax

��� ������ B�B��� MOV ax� �B�h

��� ������ � PUSH ax

��� ����� E�CC�� CALL near ptr scanf

��� ������ � POP cx

��� ������ � POP cx

��� �����A �D��F� LEA ax� �bp
�Ch�

��� �����D � PUSH ax

�� �����E B�B��� MOV ax� �B�h

��� ������ � PUSH ax

��� ������ E�BF�� CALL near ptr scanf

��� ����� � POP cx

��� ������ � POP cx

��� ������ C���FA���� MOV word ptr �bp
��� �

��� �����C C���F����� MOV word ptr �bp
��� �

��� ����BD �B�FA L�� MOV dx� �bp
��

��� ����C� �B��F� MOV ax� �bp
��

�� ����C� �B�FE CMP dx� �bp
��

��� ����C� �D�� JGE L�

��� ������ C���F����� L�� MOV word ptr �bp
�Ah�� �

��� ����AF ���EF��� L�� CMP word ptr �bp
�Ah�� ��h

��� ����B� �E�� JLE L

��� ����B ����F��� ADD word ptr �bp
��� �

��� ����B� ���FA�� ADC word ptr �bp
��� �

��� JMP L� �Synthetic inst

Figure ���� Benchsho�a

��� dcc

�� �����B �B��F� L� MOV ax� �bp
�Eh�

��� �����E ����F� ADD ax� �bp
�Ch�

��� ����� ����F� ADD ax� �bp
�Ah�

��� ����� ����F� MOV �bp
�Eh�� ax

��� ����� �B��F� MOV ax� �bp
�Eh�

�� ����A D�F� SAR ax� �

�� ����C ����F� MOV �bp
�Ch�� ax

�� ����F �B��F� MOV ax� �bp
�Ch�

�� ������ BB�A�� MOV bx� �Ah

�� ����� �� CWD

� MOV tmp� dx�ax �Synthetic inst

�� ������ F�FB IDIV bx

�� MOD bx �Synthetic inst

�� ������ ���F� MOV �bp
�Eh�� dx

�� �����B �B��F� MOV ax� �bp
�Ch�

��� �����E �B��F� CMP ax� �bp
�Ah�

��� ������ �� JNE L�

��� ������ B����� MOV ax� �

��� �����A ����F� L�� MOV �bp
�Eh�� ax

�� �����D �B��F� MOV ax� �bp
�Eh�

��� ������ �B��F� OR ax� �bp
�Ah�

��� ������ ����F� MOV �bp
�Ch�� ax

��� ������ �B��F� MOV ax� �bp
�Ch�

��� ������ F�D� NEG ax

��� �����B �BC� SBB ax� ax

��� �����D �� INC ax

��� �����E ����F� MOV �bp
�Eh�� ax

��� ������ �B��F� MOV ax� �bp
�Eh�

��� ������ ����F� ADD ax� �bp
�Ah�

�� ������ ����F� MOV �bp
�Ch�� ax

��� �����A �B��F� MOV ax� �bp
�Ch�

��� �����D �B��F� CMP ax� �bp
�Ah�

��� ����A� �E� JLE L�

��� ����A� B����� MOV ax� �

��� ����A� ����F� L�� MOV �bp
�Eh�� ax

��� ����AC FF��F� INC word ptr �bp
�Ah�

��� JMP L� �Synthetic inst

��� ����A� ��C� L�� XOR ax� ax

�� JMP L� �Synthetic inst

��� ������ ��C� L�� XOR ax� ax

��� JMP L� �Synthetic inst

��� ����CB �F�� L�� JG L��

��� ����CD �B��FC CMP ax� �bp
��

��� ����D� ���� JA L��

Figure ���� Benchsho�a � Continued

�� Results ��

��� ����D FF��F� L��� PUSH word ptr �bp
�Eh�

��� ����D� B�BA�� MOV ax� �BAh

��� ����DB � PUSH ax

�� ����DC E��C�B CALL near ptr printf

��� ����DF � POP cx

��� ����E� � POP cx

��� ����E� �BE MOV sp� bp

��� ����E� D POP bp

��� ����E� C� RET

main ENDP

Figure ���� Benchsho�a � Continued

�	� dcc

��

� Input file � benchsho�exe

� File type � EXE

��

'include �dcc�h�

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

� int loc�� int loc�� int loc��

long loc�� long loc� int loc�� �� ax ��

scanf ��&ld�� !loc��

printf ��executing &ld iterations$n�� loc��

scanf ��&ld�� !loc���

scanf ��&ld�� !loc���

loc� 	 ��

while ��loc� #	 loc�� �

loc� 	 ��

while ��loc� #	 ���� �

loc� 	 ��loc� � loc�� � loc���

loc� 	 �loc� "" ���

loc� 	 �loc� & ����

if �loc� 		 loc�� �

loc� 	 ��

else �

loc� 	 ��

loc� 	 loc��

loc� 	 �loc� % loc���

loc� 	 �loc��

loc� 	 �loc� � loc���

if �loc� " loc�� �

loc� 	 ��

else �

loc� 	 ��

loc� 	 loc��

loc� 	 �loc� � ���

loc� 	 �loc� � ���

printf ��a	&d$n�� loc���

Figure ��	� Benchsho�b

�� Results �	�

�� benchsho
 benchmark for short integers

� Thomas Plum� Plum Hall Inc� ���
���
����

� If machine traps overflow� use an unsigned type

� Let T be the execution time in milliseconds

� Then average time per operator 	 T�major usec

� �Because the inner loop has exactly ���� operations�

��

'define STOR�CL auto

'define TYPE short

'include #stdio�h"

main �int ac� char �av���

� STOR�CL TYPE a� b� c�

long d� major�

scanf ��&ld�� !major��

printf��executing &ld iterations$n�� major��

scanf ��&ld�� !a��

scanf ��&ld�� !b��

for �d 	 �� d #	 major� ��d�

�

�� inner loop executes ���� selected operations ��

for �c 	 �� c #	 ��� ��c�

�

a 	 a � b � c�

b 	 a "" ��

a 	 b & ���

a 	 b 		 c�

b 	 a % c�

a 	 �b�

b 	 a � c�

a 	 b " c�

printf��a	&d$n�� a��

Figure ���� Benchsho�c

Subroutine Low�level High�level Reduction
main ��� � ����
total ��� � ����

Figure ����� Benchsho Statistics

�	� dcc

���
 Benchlng�exe

Benchlng is a program from the Plum�Hall benchmark suite� which benchmarks long
variables� The program is exactly the same as the benchsho�exe program� but makes use of
long variables rather than short integers� The disassembly program is shown in Figure �����
the decompiled C program in Figure ���� and the initial C program in Figure ����� The
program has the following call graph�

main

scanf

printf

LMOD'

As seen from the disassembly of the program� the long variables are located in the stack
at o�sets
�
���
���
�� and
��� The
nal C decompiled code makes use of
ve long
variables and an integer variable loc�� This latter variable is used as a Boolean variable to
hold the contents of a Boolean expression evaluation� Three Boolean expression evaluations
are seen in the
nal C code�

loc� 		 loc�

LO�loc�� # HI�loc��

loc� � loc�

All these expressions can be transformed into Boolean assignment by means of the
transformation described in the previous Section� The generated code would look like this�

loc 	 �loc� 		 loc���

�� other code here ��

loc 	 �LO�loc�� # HI�loc����

�� other code here ��

loc 	 �loc� � loc���

The second Boolean expression checks the low and high part of a long variable and ors
them together� this is equivalent to a logical negation of the long variable� which would lead
to the following
nal code�

loc 	 !loc��

The benchlng program as compared to the benchsho program has ���� more low�level
instructions in the main program �the LMOD' subroutine calculates the modulus of long
variables and is untranslatable to a high�level language�� three more instructions in the
high�level representation of main �due to the logical negation of a long variable� which
makes use of the temporary Boolean variable loc��� and performs a reduction of ���	�
instructions as shown in Figure �����

�� Results �	�

LMOD� PROC FAR

��� ���EEB B����� MOV cx� �

��� ���EF� PUSH bp

��� ���EF� � PUSH si

��� ���EF � PUSH di

�� ���EF� �BEC MOV bp� sp

��� ���EF� �BF� MOV di� cx

��� ���EFA �B���A MOV ax� �bp��Ah�

��� ���EFD �B��C MOV dx� �bp��Ch�

��� ���F�� �BE�E MOV bx� �bp��Eh�

��� ���F�� �B�E�� MOV cx� �bp���h�

��� ���F�� �BC� OR cx� cx

��� ���F�� ��� JNE L�

��� ���F�A �BD� OR dx� dx

��� ���F�C ���� JE L�

�� ���F�E �BDB OR bx� bx

��� ���F�� ��� JE L�

��� ���F�� F�C����� L�� TEST di� �

��� ���F�� ��C JNE L�

��� ���F�� �BD� OR dx� dx

��� ���F�A ���A JNS L�

��� ���F�C F�DA NEG dx

��� ���F�E F�D� NEG ax

��� ���F�� ��DA�� SBB dx� �

��� ���F�� ��CF�C OR di� �Ch

�� ���F�� �BC� L�� OR cx� cx

��� ���F�� ���A JNS L�

��� ���F�A F�D� NEG cx

��� ���F�C F�DB NEG bx

��� ���F�E ��D��� SBB cx� �

��� ���F�� ��F��� XOR di� �

��� ���F�� �BE� L�� MOV bp� cx

��� ���F�� B����� MOV cx� ��h

��� ���F�� � PUSH di

��� ���F�A ��FF XOR di� di

�� ���F�C ��F� XOR si� si

��� ���F�E D�E� L� SHL ax� �

��� ���F�� D�D� RCL dx� �

��� ���F�� D�D� RCL si� �

��� ���F�� D�D� RCL di� �

��� ���F�� �BFD CMP di� bp

��� ���F�� ���B JB L�

��� ���F�A ���� JA L�

��� ���F�C �BF� CMP si� bx

��� ���F�E ��� JB L�

Figure ����� Benchlng�a

�		 dcc

�� ���F� �BF� L�� SUB si� bx

��� ���F� �BFD SBB di� bp

��� ���F� �� INC ax

��� ���F E�E� L�� LOOP L

��� ���F� B POP bx

�� ���F� F�C����� TEST bx� �

�� ���FC ���� JE L�

�� ���FE �BC� MOV ax� si

�� ���F�� �BD� MOV dx� di

�� ���F�� D�EB SHR bx� �

� ���F�� F�C����� L�� TEST bx� �

�� ���F�� ���� JE L�

�� ���F�A F�DA NEG dx

�� ���F�C F�D� NEG ax

�� ���F�E ��DA�� SBB dx� �

��� ���F�� F L�� POP di

��� ���F�� E POP si

��� ���F�� D POP bp

��� ���F�� CA���� RETF �

��� L�� MOV tmp� dx�ax �Synthetic inst

�� ���F�� F�F� DIV bx

��� MOD bx �Synthetic inst

��� ���F�� F�C����� TEST di� �

��� ���F�D ���� JE L��

��� ���F�F �BC� MOV ax� dx

��� ���F�� ��D� L��� XOR dx� dx

��� ���F�� EBEC JMP L�

LMOD� ENDP

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� ��h

��� ������ �D��FC LEA ax� �bp
��

��� ������ � PUSH ax

�� ������ B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E�D� CALL near ptr scanf

��� �����B � POP cx

��� �����C � POP cx

��� �����D FF��FE PUSH word ptr �bp
��

��� ������ FF��FC PUSH word ptr �bp
��

��� ������ B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E�C�C CALL near ptr printf

Figure ����� Benchlng�a � Continued

�� Results �	

�� �����A ��C��� ADD sp� �

��� �����D �D��EC LEA ax� �bp
��h�

��� ������ � PUSH ax

��� ������ B�B��� MOV ax� �B�h

��� ������ � PUSH ax

��� ����� E���� CALL near ptr scanf

��� ������ � POP cx

��� ������ � POP cx

��� �����A �D��F� LEA ax� �bp
��h�

��� �����D � PUSH ax

�� �����E B�B��� MOV ax� �B�h

��� ������ � PUSH ax

��� ������ E���� CALL near ptr scanf

��� ����� � POP cx

��� ������ � POP cx

��� ������ C���FA���� MOV word ptr �bp
��� �

��� �����C C���F����� MOV word ptr �bp
��� �

��� �����D �B�FA L��� MOV dx� �bp
��

��� ������ �B��F� MOV ax� �bp
��

�� ������ �B�FE CMP dx� �bp
��

��� ������ �D�� JGE L��

��� ������ C���F����� L��� MOV word ptr �bp
�Ah�� �

��� ������ C���F����� MOV word ptr �bp
�Ch�� �

��� ������ ���EF��� L��� CMP word ptr �bp
�Ah�� �

��� ����� �D�� JGE L�

��� ����� �B�EE L��� MOV dx� �bp
��h�

�� ����� �B��EC MOV ax� �bp
��h�

��� ����� ����F� ADD ax� �bp
��h�

��� ����A ���F� ADC dx� �bp
�Eh�

��� ����D ����F� ADD ax� �bp
�Ch�

��� ������ ���F� ADC dx� �bp
�Ah�

�� ������ ���EE MOV �bp
��h�� dx

�� ������ ����EC MOV �bp
��h�� ax

�� ������ �B�EE MOV dx� �bp
��h�

�� �����C �B��EC MOV ax� �bp
��h�

�� �����F D�FA SAR dx� �

� ������ D�D� RCR ax� �

�� ������ ���F� MOV �bp
�Eh�� dx

�� ������ ����F� MOV �bp
��h�� ax

�� ������ ��D� XOR dx� dx

�� �����B B��A�� MOV ax� �Ah

Figure ����� Benchlng�a � Continued

�	� dcc

��� �����E � PUSH dx

��� �����F � PUSH ax

��� ������ FF��F� PUSH word ptr �bp
�Eh�

��� ������ FF��F� PUSH word ptr �bp
��h�

��� ������ �AEB�D���� CALL far ptr LMOD�

�� �����B ���EE MOV �bp
��h�� dx

��� �����E ����EC MOV �bp
��h�� ax

��� ������ �B�F� MOV dx� �bp
�Eh�

��� ������ �B��F� MOV ax� �bp
��h�

��� ������ �B�F� CMP dx� �bp
�Ah�

��� �����A ��A JNE L��

��� �����C �B��F� CMP ax� �bp
�Ch�

��� �����F �� JNE L��

��� ����A� B����� MOV ax� �

�� ����A� �� L��� CWD

��� ����A� ���EE MOV �bp
��h�� dx

��� ����AC ����EC MOV �bp
��h�� ax

��� ����AF �B�EE MOV dx� �bp
��h�

��� ����B� �B��EC MOV ax� �bp
��h�

��� ����B �B��F� OR ax� �bp
�Ch�

��� ����B� �B�F� OR dx� �bp
�Ah�

��� ����BB ���F� MOV �bp
�Eh�� dx

��� ����BE ����F� MOV �bp
��h�� ax

��� ����C� �B��F� MOV ax� �bp
��h�

�� ����C� �B��F� OR ax� �bp
�Eh�

��� ����C� �� JNE L��

��� ����C� B����� MOV ax� �

��� ����D� �� L��� CWD

��� ����D� ���EE MOV �bp
��h�� dx

��� ����D� ����EC MOV �bp
��h�� ax

��� ����D� �B�EE MOV dx� �bp
��h�

��� ����DA �B��EC MOV ax� �bp
��h�

��� ����DD ����F� ADD ax� �bp
�Ch�

�� ����E� ���F� ADC dx� �bp
�Ah�

��� ����E� ���F� MOV �bp
�Eh�� dx

��� ����E� ����F� MOV �bp
��h�� ax

��� ����E� �B�F� MOV dx� �bp
�Eh�

��� ����EC �B��F� MOV ax� �bp
��h�

��� ����EF �B�F� CMP dx� �bp
�Ah�

��� ����F� �C�C JL L��

��� ����F� �F� JG L��

��� ����F� �B��F� CMP ax� �bp
�Ch�

��� ����F� ��� JBE L��

Figure ����� Benchlng�a � Continued

�� Results �	�

�� ����FB B����� L��� MOV ax� �

��� ������ �� L��� CWD

��� ������ ���EE MOV �bp
��h�� dx

��� ������ ����EC MOV �bp
��h�� ax

��� ������ ����F��� ADD word ptr �bp
�Ch�� �

��� �����D ���F��� ADC word ptr �bp
�Ah�� �

��� JMP L�� �Synthetic inst

��� ������ ��C� L��� XOR ax� ax

��� JMP L�� �Synthetic inst

�� ����CE ��C� L��� XOR ax� ax

��� JMP L�� �Synthetic inst

��� ����A� ��C� L��� XOR ax� ax

��� JMP L�� �Synthetic inst

��� �����A �F�� L�� JG L��

��� �����C ���EF��� CMP word ptr �bp
�Ch�� ��h

��� ������ ���� JA L��

��� ����� ����F��� L��� ADD word ptr �bp
��� �

��� ������ ���FA�� ADC word ptr �bp
��� �

�� JMP L�� �Synthetic inst

��� �����B �F�� L��� JG L�

��� �����D �B��FC CMP ax� �bp
��

��� ������ ���� JA L�

��� ����� FF��EE L�� PUSH word ptr �bp
��h�

��� ������ FF��EC PUSH word ptr �bp
��h�

��� �����B B�BA�� MOV ax� �BAh

��� �����E � PUSH ax

��� �����F E��D�B CALL near ptr printf

�� ����� ��C��� ADD sp� �

��� ���� �BE MOV sp� bp

��� ����� D POP bp

��� ����� C� RET

main ENDP

Figure ����� Benchlng�a � Continued

�	� dcc

��

� Input file � benchlng�exe

� File type � EXE

��

'include �dcc�h�

long LMOD� �long arg�� long arg��

�� Takes � bytes of parameters�

� Runtime support routine of the compiler�

� Untranslatable routine� Assembler provided�

� Return value in registers dx�ax�

� Pascal calling convention�

��

�

�� disassembly code here ��

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

long loc��

long loc��

long loc��

long loc��

long loc�

int loc�� �� ax ��

scanf ��&ld�� !loc��

printf ��executing &ld iterations$n�� loc��

scanf ��&ld�� !loc���

scanf ��&ld�� !loc���

loc� 	 ��

while ��loc� #	 loc�� �

loc� 	 ��

while ��loc� #	 ���� �

loc� 	 ��loc� � loc�� � loc���

loc� 	 �loc� "" ���

loc� 	 LMOD� �loc�� ����

if �loc� 		 loc�� �

loc� 	 ��

Figure ���� Benchlng�b

�� Results �	

else �

loc� 	 ��

loc� 	 loc��

loc� 	 �loc� % loc���

if ��LO�loc�� % HI�loc��� 		 �� �

loc� 	 ��

else �

loc� 	 ��

loc� 	 loc��

loc� 	 �loc� � loc���

if �loc� " loc�� �

loc� 	 ��

else �

loc� 	 ��

loc� 	 loc��

loc� 	 �loc� � ���

loc� 	 �loc� � ���

printf ��a	&d$n�� loc���

Figure ���� Benchlng�b � Continued

�
� dcc

�� benchlng
 benchmark for long integers

� Thomas Plum� Plum Hall Inc� ���
���
����

� If machine traps overflow� use an unsigned type

� Let T be the execution time in milliseconds

� Then average time per operator 	 T�major usec

� �Because the inner loop has exactly ���� operations�

��

'define TYPE long

'include #stdio�h"

main �int ac� char �av���

� TYPE a� b� c�

long d� major�

scanf ��&ld�� !major��

printf��executing &ld iterations$n�� major��

scanf ��&ld�� !a��

scanf ��&ld�� !b��

for �d 	 �� d #	 major� ��d�

�

�� inner loop executes ���� selected operations ��

for �c 	 �� c #	 ��� ��c�

�

a 	 a � b � c�

b 	 a "" ��

a 	 b & ���

a 	 b 		 c�

b 	 a % c�

a 	 �b�

b 	 a � c�

a 	 b " c�

printf��a	&d$n�� a��

Figure ����� Benchlng�c

Subroutine Low�level High�level Reduction
LMOD' � � �
main ��� 	 ���	�
total ��� 	 ���	�

Figure ����� Benchlng Statistics

�� Results �
�

���� Benchmul�exe

Benchmul is another program from the Plum�Hall benchmarks� This program benchmarks
integer multiplication by executing ���� multiplications in a loop� The disassembly program
is shown in Figure ����� the decompiled C program in Figure ����� and the initial C program
in Figure ����� This program has the following call graph�

main

scanf

printf

Benchmul makes use of two long variables to loop a large number of times through the
program� and three integer variables that perform the operations� one of these variables
is not actually used in the program� As seen from the disassembly� the long variables are
located on the stack at o�sets
 and
�� and the integer variables are at o�sets
���
���
and on the register variable si� The
nal C code is identical to the initial C code� and a
reduction of 	���� of instructions was achieved by this program� as seen in Figure ���	�

�
� dcc

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�C SUB sp� �Ch

��� ������ � PUSH si

��� ������ �D��FC LEA ax� �bp
��

�� ������ � PUSH ax

��� ����� B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E�D��� CALL near ptr scanf

��� �����C � POP cx

��� �����D � POP cx

��� �����E FF��FE PUSH word ptr �bp
��

��� ������ FF��FC PUSH word ptr �bp
��

��� ������ B����� MOV ax� ���h

��� ������ � PUSH ax

�� ������ E����C CALL near ptr printf

��� �����B ��C��� ADD sp� �

��� �����E �D��F� LEA ax� �bp
�Ch�

��� ������ � PUSH ax

��� ������ B�B��� MOV ax� �B�h

��� ����� � PUSH ax

��� ������ E�B��� CALL near ptr scanf

��� ������ � POP cx

��� �����A � POP cx

��� �����B �D��F� LEA ax� �bp
�Ah�

�� �����E � PUSH ax

��� �����F B�B�� MOV ax� �Bh

��� ������ � PUSH ax

��� ������ E�A��� CALL near ptr scanf

��� ������ � POP cx

��� ������ � POP cx

��� ������ C���FA���� MOV word ptr �bp
��� �

��� �����D C���F����� MOV word ptr �bp
��� �

��� ����AA �B�FA L�� MOV dx� �bp
��

�� ����AD �B��F� MOV ax� �bp
��

��� ����B� �B�FE CMP dx� �bp
��

��� ����B� �C�F JL L�

��� ����B �F� JG L�

��� ����B� �B��FC CMP ax� �bp
��

��� ����BA ���� JBE L�

��� ����BC FF��F� L�� PUSH word ptr �bp
�Ch�

��� ����BF B�B��� MOV ax� �B�h

��� ����C� � PUSH ax

��� ����C� E��D�B CALL near ptr printf

Figure ����� Benchmul�a

�� Results �
�

�� ����C� � POP cx

��� ����C� � POP cx

��� ����C� E POP si

��� ����C� �BE MOV sp� bp

��� ����CB D POP bp

�� ����CC C� RET

�� ������ BE���� L�� MOV si� �

�� �����D ��FE�� L�� CMP si� ��h

�� ����A� �EA� JLE L

� ����A� ����F��� ADD word ptr �bp
��� �

�� ����A� ���FA�� ADC word ptr �bp
��� �

�� JMP L� �Synthetic inst

�� ������ �B��F� L� MOV ax� �bp
�Ch�

�� �����C F���F� MUL word ptr �bp
�Ch�

��� �����F F���F� MUL word ptr �bp
�Ch�

��� ����� F���F� MUL word ptr �bp
�Ch�

��� ���� F���F� MUL word ptr �bp
�Ch�

��� ����� F���F� MUL word ptr �bp
�Ch�

��� ����B F���F� MUL word ptr �bp
�Ch�

�� ����E F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� �����A F���F� MUL word ptr �bp
�Ch�

��� �����D F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

�� �����C F���F� MUL word ptr �bp
�Ch�

��� �����F F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ����� F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� �����B F���F� MUL word ptr �bp
�Ch�

��� �����E F���F� MUL word ptr �bp
�Ch�

��� ������ F���F� MUL word ptr �bp
�Ch�

��� ������ BA���� MOV dx� �

��� ������ F�E� MUL dx

�� ������ ����F� MOV �bp
�Ch�� ax

��� �����C �� INC si

��� JMP L� �Synthetic inst

main ENDP

Figure ����� Benchmul�a � Continued

�
	 dcc

��

� Input file � benchmul�exe

� File type � EXE

��

'include �dcc�h�

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

long loc��

long loc��

int loc�

scanf ��&ld�� !loc���

printf ��executing &ld iterations$n�� loc���

scanf ��&d�� !loc���

scanf ��&d�� !loc���

loc� 	 ��

while ��loc� #	 loc��� �

loc 	 ��

while ��loc #	 ���� �

loc� 	 �������������������������loc� � loc�� � loc�� � loc��

� loc�� � loc�� � loc�� � loc�� � loc�� � loc�� �

loc�� � loc�� � loc�� � loc�� � loc�� � loc�� � loc��

� loc�� � loc�� � loc�� � loc�� � loc�� � loc�� �

loc�� � loc�� � ���

loc 	 �loc � ���

loc� 	 �loc� � ���

printf ��a	&d$n�� loc���

Figure ����� Benchmul�b

�� Results �

�� benchmul
 benchmark for int multiply

� Thomas Plum� Plum Hall Inc� ���
���
����

� If machine traps overflow� use an unsigned type

� Let T be the execution time in milliseconds

� Then average time per operator 	 T�major usec

� �Because the inner loop has exactly ���� operations�

��

'define STOR�CL auto

'define TYPE int

'include #stdio�h"

main �int ac� char �av���

� STOR�CL TYPE a� b� c�

long d� major�

scanf ��&ld�� !major��

printf��executing &ld iterations$n�� major��

scanf ��&d�� !a��

scanf ��&d�� !b��

for �d 	 �� d #	 major� ��d�

�

�� inner loop executes ���� selected operations ��

for �c 	 �� c #	 ��� ��c�

�

a 	 � �a�a�a�a�a�a�a�a � a�a�a�a�a�a�a�a �

a�a�a�a�a�a�a�a � a� �� � � ��

printf��a	&d$n�� a��

Figure ����� Benchmul�c

Subroutine Low�level High�level Reduction
main 		 � 	����
total 		 � 	����

Figure ���	� Benchmul Statistics

�
� dcc

���� Benchfn�exe

Benchfn is a program from the Plum�Hall benchmark suite� which benchmarks function
calls� ���� subroutine calls are done each time around the loop� The disassembly program
is shown in Figure ����� the decompiled C program in Figure ����� and the initial C program
in Figure ����� This program has the following call graph�

main

scanf

printf

proc��

proc��

proc��

proc�

Benchfn has four procedures and a main program� Three of the four procedures invoke other
procedure� and the fourth procedure is empty� The percentage of reduction on the number
of intermediate instructions is not as high in this program as compared to the previous
programs since there are not many expressions in the program �which is not normally the
case with high�level programs�� As seen in the statistics of this program �see Figure �����
the empty procedure has a ��� reduction since the procedure prologue and trailer low�level
instructions are eliminated in the C program� the other three procedures have an average
of ���� reduction of instructions on � procedure calls performed by them� and the main
program has an 	���	 reduction of instructions since expressions and assignments are used
in this procedure� The overall average for the program is low� ����� � and is due to the
lack of assignment statements in this program�

�� Results �
�

proc�� PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD D POP bp

��� ����FE C� RET

proc�� ENDP

proc�� PROC NEAR

��� ����FF PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ E�FFF CALL near ptr proc��

��� ����� E�F�FF CALL near ptr proc��

��� ������ E�EFFF CALL near ptr proc��

�� �����B E�ECFF CALL near ptr proc��

��� �����E E�E�FF CALL near ptr proc��

��� ������ E�E�FF CALL near ptr proc��

��� ������ E�E�FF CALL near ptr proc��

��� ������ E�E�FF CALL near ptr proc��

��� �����A E�DDFF CALL near ptr proc��

��� �����D E�DAFF CALL near ptr proc��

��� ������ D POP bp

��� ������ C� RET

proc�� ENDP

proc�� PROC NEAR

��� ������ PUSH bp

��� ������ �BEC MOV bp� sp

��� ����� E�D�FF CALL near ptr proc��

��� ������ E�D�FF CALL near ptr proc��

��� �����B E�D�FF CALL near ptr proc��

�� �����E E�CEFF CALL near ptr proc��

��� ������ E�CBFF CALL near ptr proc��

��� ������ E�C�FF CALL near ptr proc��

��� ������ E�CFF CALL near ptr proc��

��� �����A E�C�FF CALL near ptr proc��

��� �����D E�BFFF CALL near ptr proc��

��� ������ E�BCFF CALL near ptr proc��

��� ������ D POP bp

��� ������ C� RET

proc�� ENDP

proc�� PROC NEAR

��� ����� PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ E�D�FF CALL near ptr proc��

Figure ����� Benchfn�a

�
� dcc

��� �����B E�D�FF CALL near ptr proc��

��� �����E E�D�FF CALL near ptr proc��

�� ����� E�CEFF CALL near ptr proc��

��� ����� E�CBFF CALL near ptr proc��

��� ����� E�C�FF CALL near ptr proc��

��� ����A E�CFF CALL near ptr proc��

��� ����D E�C�FF CALL near ptr proc��

��� ������ E�BFFF CALL near ptr proc��

��� ������ D POP bp

��� ������ C� RET

proc�� ENDP

main PROC NEAR

��� ����� PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ ��EC�� SUB sp� �

��� �����B �D��FC LEA ax� �bp
��

��� �����E � PUSH ax

�� �����F B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E���� CALL near ptr scanf

��� ������ � POP cx

��� ������ � POP cx

��� ������ FF��FE PUSH word ptr �bp
��

��� �����B FF��FC PUSH word ptr �bp
��

��� �����E B����� MOV ax� ���h

��� ������ � PUSH ax

��� ������ E�BE�B CALL near ptr printf

�� ����� ��C��� ADD sp� �

��� ������ C���FA���� MOV word ptr �bp
��� �

��� �����D C���F����� MOV word ptr �bp
��� �

��� �����F �B�FA L�� MOV dx� �bp
��

��� ����A� �B��F� MOV ax� �bp
��

��� ����A �B�FE CMP dx� �bp
��

��� ����A� �CEA JL L�

��� ����AA �F� JG L�

��� ����AC �B��FC CMP ax� �bp
��

�� ����AF ��E� JBE L�

��� ����B� B�B��� L�� MOV ax� �B�h

��� ����B� � PUSH ax

��� ����B E��B�B CALL near ptr printf

��� ����B� � POP cx

��� ����B� �BE MOV sp� bp

Figure ����� Benchfn�a � Continued

�� Results �

��� ����BB D POP bp

��� ����BC C� RET

��� ������ E�AEFF L�� CALL near ptr proc��

��� ������ ����F��� ADD word ptr �bp
��� �

�� �����B ���FA�� ADC word ptr �bp
��� �

��� JMP L� �Synthetic inst

main ENDP

Figure ����� Benchfn�a � Continued

��� dcc

��

� Input file � benchfn�exe

� File type � EXE

��

'include �dcc�h�

void proc�� ��

�� Takes no parameters�

� High
level language prologue code�

��

�

void proc�� ��

�� Takes no parameters�

� High
level language prologue code�

��

�

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

void proc�� ��

�� Takes no parameters�

� High
level language prologue code�

��

�

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

Figure ����� Benchfn�b

�� Results ���

proc�� ���

proc�� ���

proc�� ���

void proc�� ��

�� Takes no parameters�

� High
level language prologue code�

��

�

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

proc�� ���

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

long loc��

long loc��

scanf ��&ld�� !loc���

printf ��executing &ld iterations$n�� loc���

loc� 	 ��

while ��loc� #	 loc��� �

proc�� ���

loc� 	 �loc� � ���

printf ��finished$n���

Figure ����� Benchfn�b � Continued

��� dcc

�� benchfn
 benchmark for function calls

� Thomas Plum� Plum Hall Inc� ���
���
����

� Let T be the execution time in milliseconds

� Then average time per operator 	 T�major usec

� �Because the inner loop has exactly ���� operations�

��

'include #stdio�h"

f��� � �

f��� � f����f����f����f����f����f����f����f����f����f���� �� �� ��

f��� � f����f����f����f����f����f����f����f����f����f���� �� �� ��

f��� � f����f����f����f����f����f����f����f����f���� �� � ��

main �int ac� char �av���

� long d� major�

scanf ��&ld�� !major��

printf��executing &ld iterations$n�� major��

for �d 	 �� d #	 major� ��d�

f���� �� executes ���� calls ��

printf ��finished$n���

Figure ����� Benchfn�c

Subroutine Low�level High�level Reduction
proc � � � ������
proc � �� �� 	���
proc �� �� 	���
proc � �� � �����
main �� � 	���	
total 	 �� �����

Figure ���� Benchfn Statistics

�� Results ���

���� Fibo�exe

Fibo is a program that calculates the Fibonacci of input numbers� The computation of the
Fibonacci number is done in a recursive function �two recursions are used�� The disassembly
program is shown in Figure ����� the decompiled C program in Figure ����� and the initial
C program in Figure ����� Fibo has the following call graph�

main

scanf

printf

exit

proc��

proc��

The main of the decompiled C program has the same number of instructions as the initial
C program� the for�� loop is represented by a while�� loop� The recursive Fibonacci
function� proc�� in the decompiled program� makes use of
ve instructions as opposed to
three instructions in the initial code� These extra instructions are due to a copy of the
argument to a local variable �loc� 	 arg���� and the placement of the result in a register
variable along two di�erent paths �i�e� two di�erent possible results� before returning this
value� The code is functionally equivalent to the initial code in all ways� Note that on the
second recursive invocation of proc��� the actual parameter expression is �loc� �
���
which is equivalent to �loc�
 ��� The former expression comes from the disassembly of
the program which makes use of the addition of a local variable and a negative number�
rather than the subtraction of a positive number� As seen in the statistics of the program �see
Figure ����� the individual and overall reduction on the number of intermediate instruction
is 	���� �

��	 dcc

proc�� PROC NEAR

��� ����B PUSH bp

��� ����C �BEC MOV bp� sp

��� ����E � PUSH si

��� ����F �B���� MOV si� �bp���

��� ������ ��FE�� CMP si� �

�� ����� �E�C JLE L�

��� ������ �BC� MOV ax� si

��� ������ �� DEC ax

��� �����A � PUSH ax

��� �����B E�EDFF CALL near ptr proc��

��� �����E � POP cx

��� �����F � PUSH ax

��� ������ �BC� MOV ax� si

��� ������ �FEFF ADD ax� �FFFEh

��� ����� � PUSH ax

�� ������ E�E�FF CALL near ptr proc��

��� ������ � POP cx

��� �����A �BD� MOV dx� ax

��� �����C � POP ax

��� �����D ��C� ADD ax� dx

��� ������ E L�� POP si

��� ������ D POP bp

��� �����A C� RET

��� ������ B����� L�� MOV ax� �

�� ������ EB�� JMP L�

proc�� ENDP

main PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� �

��� ������ � PUSH si

��� ������ � PUSH di

�� ������ B����� MOV ax� ���h

��� ����� � PUSH ax

��� ������ E����C CALL near ptr printf

��� ������ � POP cx

��� �����A �D��FC LEA ax� �bp
��

��� �����D � PUSH ax

��� �����E B�B��� MOV ax� �B�h

��� ������ � PUSH ax

��� ������ E���� CALL near ptr scanf

��� ����� � POP cx

�� ������ � POP cx

Figure ����� Fibo�a

�� Results ��

��� ������ BE���� MOV si� �

��� ������ �B��FC L�� CMP si� �bp
��

��� �����C �ECE JLE L�

��� �����E ��C� XOR ax� ax

��� ����� � PUSH ax

��� ����� E����� CALL near ptr exit

��� ����� � POP cx

��� ���� F POP di

�� ����� E POP si

��� ����� �BE MOV sp� bp

��� ����� D POP bp

��� ����A C� RET

��� �����C B�B��� L�� MOV ax� �B�h

��� �����F � PUSH ax

��� ������ E�EE�B CALL near ptr printf

��� ������ � POP cx

��� ������ �D��FE LEA ax� �bp
��

��� ������ � PUSH ax

�� ������ B�C��� MOV ax� �C�h

��� �����B � PUSH ax

��� �����C E��B�� CALL near ptr scanf

��� �����F � POP cx

��� ������ � POP cx

��� ������ FF��FE PUSH word ptr �bp
��

��� ������ E����� CALL near ptr proc��

��� ������ � POP cx

��� ������ �BF� MOV di� ax

��� �����A � PUSH di

�� �����B FF��FE PUSH word ptr �bp
��

��� �����E B�C��� MOV ax� �C�h

��� ������ � PUSH ax

��� ������ E�CC�B CALL near ptr printf

��� ����� ��C��� ADD sp� �

�� ������ �� INC si

�� JMP L� �Synthetic inst

main ENDP

Figure ����� Fibo�a � Continued

��� dcc

��

� Input file � fibo�exe

� File type � EXE

��

'include �dcc�h�

int proc�� �int arg��

�� Takes � bytes of parameters�

� High
level language prologue code�

� C calling convention�

��

�

int loc��

int loc�� �� ax ��

loc� 	 arg��

if �loc� " �� �

loc� 	 �proc�� ��loc�
 ��� � proc�� ��loc� �
�����

else �

loc� 	 ��

return �loc���

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc�� int loc��

int loc�� int loc��

printf ��Input number of iterations� ���

scanf ��&d�� !loc���

loc� 	 ��

while ��loc� #	 loc��� �

printf ��Input number� ���

scanf ��&d�� !loc���

loc� 	 proc�� �loc���

printf ��fibonacci�&d� 	 &u$n�� loc�� loc���

loc� 	 �loc� � ���

exit ����

Figure ����� Fibo�b

�� Results ���

'include #stdio�h"

int main��

� int i� numtimes� number�

unsigned value� fib���

printf��Input number of iterations� ���

scanf ��&d�� !numtimes��

for �i 	 �� i #	 numtimes� i���

�

printf ��Input number� ���

scanf ��&d�� !number��

value 	 fib�number��

printf��fibonacci�&d� 	 &u$n�� number� value��

exit����

unsigned fib�x� �� compute fibonacci number recursively ��

int x�

�

if �x " ��

return �fib�x
 �� � fib�x
 ����

else

return ����

Figure ����� Fibo�c

Subroutine Low�level High�level Reduction
proc � � � 	����
main � �� 	����
total �	 �� 	����

Figure ����� Fibo Statistics

��� dcc

��� Crc�exe

Crc is a program that calculates the cyclic redundancy check �CRC� for a ��character
message block� and then passes the resulting CRC back into the CRC functions to see if the
�received� ��character message and CRC are correct� The disassembly program is shown
in Figure ����� the decompiled C program in Figure ���	� and the initial C program in
Figure ����� Crc has the following call graph�

main

proc��

proc��

LXLSH'

LXRSH'

proc��

proc��

printf

As seen in the initial C program� crc has three functions and a main procedure� The
decompiled version of the program has
ve functions and a main program� the two extra
functions are runtime support routines to support long right and left shifts �LXRSH' and
LXLSH' respectively�� These two routines were initially written in assembler� and are
translated into C by accessing the low and high parts of the long argument� As seen in the
statistics of the program �see Figure ������ the user functions have a reduction of over 	�
intermediate instructions� These functions have the same number of high�level instructions
when compared with the original program� Function proc�� is the crc�clear function
that returns zero� This function has a 	���� reduction of intermediate instructions due
to the overhead provided by the procedure prologue and trailer code� Function proc�� is
the crc�update function that calculates the CRC for the input argument according to the
CCITT recommended CRC generator function� This function uses � bits to compute the
result� and returns the lower �� bits as the function�s value� The decompiled version of
this function propagates the fact that only �� bits are used for the result to the invoked
runtime routine LXRSH'� and hence this latter function only returns an integer ��� bits�
rather than a long integer� the code is much simpler than its homologous LXLSH' �which
returns a long integer�� The reduction in the number of instruction is of 	��� � Function
proc�� is the crc�finish function which returns the
nal two CRC characters that are
to be transmitted at the end of the block� This function calls the crc�update function
twice� one as an argument of the other� The reduction on the number of instructions is
high ������ � since all �� low�level instructions are transformed into � high�level return
instruction� Finally� the main program invokes the functions in the right order� a reduction
of 	��� is achieved� Note that integers are used in this program rather than characters
since there is no use of the character variables as such characters �i�e� an unsigned character
generates the same code�� The overall intermediate instruction reduction on the program
is of ����	 � which is less than 	� due to the runtime routines�

�� Results ��

proc�� PROC NEAR

��� ����� PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ ��C� XOR ax� ax

��� �����A � PUSH ax

��� �����B ��C� XOR ax� ax

�� �����D � PUSH ax

��� �����E FF���� PUSH word ptr �bp���

��� ������ E��FFF CALL near ptr proc��

��� ������ � POP cx

��� ����� � POP cx

��� ������ � PUSH ax

��� ������ E���FF CALL near ptr proc��

��� �����A �BE MOV sp� bp

��� �����E D POP bp

�� �����F C� RET

proc�� ENDP

LXRSH� PROC FAR

��� ���� ��F��� CMP cl� ��h

��� ����� ���� JAE L�

��� ����A �BDA MOV bx� dx

��� ����C D�E� SHR ax� cl

��� ����E D�FA SAR dx� cl

�� ����� F�D� NEG cl

��� ����� ��C��� ADD cl� ��h

��� ���� D�E� SHL bx� cl

��� ����� �BC� OR ax� bx

��� ����� CB RETF

��� ����A ��E��� L�� SUB cl� ��h

��� ����D �BC� MOV ax� dx

��� ����F �� CWD

��� ���A� D�F� SAR ax� cl

��� ���A� CB RETF

LXRSH� ENDP

proc�� PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��C� XOR ax� ax

��� ������ D POP bp

�� ������ C� RET

proc�� ENDP

Figure ����� Crc�a

��� dcc

LXLSH� PROC FAR

��� ���A� ��F��� CMP cl� ��h

��� ���A� ���� JAE L�

��� ���A� �BD� MOV bx� ax

��� ���AA D�E� SHL ax� cl

��� ���AC D�E� SHL dx� cl

�� ���AE F�D� NEG cl

��� ���B� ��C��� ADD cl� ��h

��� ���B� D�EB SHR bx� cl

��� ���B �BD� OR dx� bx

��� ���B� CB RETF

��� ���B� ��E��� L�� SUB cl� ��h

��� ���BB �BD� MOV dx� ax

��� ���BD ��C� XOR ax� ax

��� ���BF D�E� SHL dx� cl

��� ���C� CB RETF

LXLSH� ENDP

proc�� PROC NEAR

��� ������ PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ ��EC�� SUB sp� �

��� ������ �B���� MOV ax� �bp���

��� �����C �� CWD

�� �����D B��� MOV cl� �

��� �����F �AA������� CALL far ptr LXLSH�

��� ������ � PUSH dx

��� ����� � PUSH ax

��� ������ �A���� MOV al� �bp���

��� ������ �� CWD

��� �����A �� CWD

��� �����B B POP bx

��� �����C � POP cx

��� �����D ��D� ADD bx� ax

�� �����F ��CA ADC cx� dx

��� ������ ���EFC MOV �bp
��� cx

��� ������ ��EFA MOV �bp
��� bx

��� ������ C���FE���� MOV word ptr �bp
��� �

��� ����� ���EFE�� L�� CMP word ptr �bp
��� �

��� ������ �CC� JL L�

��� �����B �B�FC MOV dx� �bp
��

��� �����E �B��FA MOV ax� �bp
��

��� ������ ���FF AND ax� �FF��h

�� ������ ��E�FF�� AND dx� �FFh

��� ������ B��� MOV cl� �

��� �����A �A������� CALL far ptr LXRSH�

Figure ����� Crc�a � Continued

�� Results ���

��� ������ �BE MOV sp� bp

��� ������ D POP bp

��� ������ C� RET

��� �����E �B�FC L�� MOV dx� �bp
��

��� ������ �B��FA MOV ax� �bp
��

��� ������ D�E� SHL ax� �

�� ������ D�D� RCL dx� �

��� ������ ���FC MOV �bp
��� dx

��� �����B ����FA MOV �bp
��� ax

��� �����E �B�FC MOV dx� �bp
��

��� ������ �B��FA MOV ax� �bp
��

��� ������ ����� AND ax� �

��� ������ ��E����� AND dx� ���h

��� �����B �BD� OR dx� ax

��� �����D ���� JE L

��� �����F �B�FC MOV dx� �bp
��

�� ����� �B��FA MOV ax� �bp
��

��� ���� ����� XOR ax� ����h

��� ����� ��F����� XOR dx� ���h

��� ����C ���FC MOV �bp
��� dx

��� ����F ����FA MOV �bp
��� ax

�� ������ FF��FE L� INC word ptr �bp
��

�� JMP L� �Synthetic inst

proc�� ENDP

main PROC NEAR

��� ����A� PUSH bp

��� ����A� �BEC MOV bp� sp

��� ����A� ��EC�� SUB sp� �

��� ����A� C���FD�� MOV byte ptr �bp
��� ��h

��� ����AA E��DFF CALL near ptr proc��

�� ����AD ����FA MOV �bp
��� ax

��� ����B� �A��FD MOV al� �bp
��

��� ����B� �� CWD

��� ����B� � PUSH ax

��� ����B FF��FA PUSH word ptr �bp
��

��� ����B� E���FF CALL near ptr proc��

��� ����BB � POP cx

��� ����BC � POP cx

��� ����BD ����FA MOV �bp
��� ax

��� ����C� FF��FA PUSH word ptr �bp
��

�� ����C� E�BFFF CALL near ptr proc��

��� ����C� � POP cx

��� ����C� ����FA MOV �bp
��� ax

��� ����CA �B��FA MOV ax� �bp
��

��� ����CD ���FF AND ax� �FF��h

��� ����D� B��� MOV cl� �

Figure ����� Crc�a � Continued

��� dcc

��� ����D� D�E� SHR ax� cl

��� ����D� ����FE MOV �bp
��� al

��� ����D� �A��FA MOV al� �bp
��

��� ����DA ��FF AND al� �FFh

�� ����DC ����FF MOV �bp
��� al

��� ����DF FF��FA PUSH word ptr �bp
��

��� ����E� B����� MOV ax� ���h

��� ����E � PUSH ax

��� ����E� E�FC�� CALL near ptr printf

��� ����E� � POP cx

��� ����EA � POP cx

��� ����EB E��CFF CALL near ptr proc��

��� ����EE ����FA MOV �bp
��� ax

��� ����F� �A��FD MOV al� �bp
��

�� ����F� �� CWD

��� ����F � PUSH ax

��� ����F� FF��FA PUSH word ptr �bp
��

��� ����F� E���FF CALL near ptr proc��

��� ����FC � POP cx

��� ����FD � POP cx

��� ����FE ����FA MOV �bp
��� ax

��� ������ �A��FE MOV al� �bp
��

��� ������ �� CWD

��� ����� � PUSH ax

�� ������ FF��FA PUSH word ptr �bp
��

��� ������ E�F�FE CALL near ptr proc��

��� �����C � POP cx

��� �����D � POP cx

��� �����E ����FA MOV �bp
��� ax

�� ������ �A��FF MOV al� �bp
��

�� ������ �� CWD

�� ����� � PUSH ax

�� ������ FF��FA PUSH word ptr �bp
��

�� ������ E�E�FE CALL near ptr proc��

� �����C � POP cx

�� �����D � POP cx

�� �����E ����FA MOV �bp
��� ax

�� ������ FF��FA PUSH word ptr �bp
��

�� ������ B��A�� MOV ax� ��Ah

��� ������ � PUSH ax

��� ������ E�BA�� CALL near ptr printf

��� �����B � POP cx

��� �����C � POP cx

��� �����D �BE MOV sp� bp

�� �����F D POP bp

��� ������ C� RET

main ENDP

Figure ����� Crc�a � Continued

�� Results ���

��

� Input file � crc�exe

� File type � EXE

��

'include �dcc�h�

int proc�� ��

�� Takes no parameters�

� High
level language prologue code�

��

�

return ����

long LXLSH� �long arg�� char arg��

�� Uses register arguments�

� arg� 	 dx�ax�

� arg� 	 cl�

� Runtime support routine of the compiler�

��

�

int loc�� �� bx ��

if �arg� # ��� �

loc� 	 LO�arg���

LO�arg�� 	 �LO�arg�� ## arg���

HI�arg�� 	 �HI�arg�� ## arg���

HI�arg�� 	 �HI�arg�� % �loc� "" ��arg� � ������

return �arg���

else �

HI�arg�� 	 LO�arg���

LO�arg�� 	 ��

HI�arg�� 	 �HI�arg�� ## �arg�
 �����

return �arg���

Figure ���	� Crc�b

��	 dcc

int LXRSH� �long arg�� char arg��

�� Uses register arguments�

� arg� 	 dx�ax�

� arg� 	 cl�

� Runtime support routine of the compiler�

��

�

int loc�� �� bx ��

if �arg� # ��� �

loc� 	 HI�arg���

LO�arg�� 	 �LO�arg�� "" arg���

HI�arg�� 	 �HI�arg�� "" arg���

return ��LO�arg�� % �loc� ## ��arg� � �������

else �

return ��HI�arg�� "" �arg�
 ������

int proc�� �int arg�� unsigned char arg��

�� Takes � bytes of parameters�

� High
level language prologue code�

� C calling convention�

��

�

int loc��

long loc��

loc� 	 �LXLSH� �arg�� �� � arg���

loc� 	 ��

while ��loc� # ��� �

loc� 	 �loc� ## ���

if ��loc� ! �x�������� �	 �� �

loc� 	 �loc� (�x���������

loc� 	 �loc� � ���

return �LXRSH� ��loc� ! �xFFFF���� ����

Figure ���	� Crc�b � Continued

�� Results ��

int proc�� �int arg��

�� Takes � bytes of parameters�

� High
level language prologue code�

� C calling convention�

��

�

return �proc�� �proc�� �arg�� ��� ����

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

int loc��

int loc��

loc� 	 ��

loc� 	 proc�� ���

loc� 	 proc�� �loc�� loc���

loc� 	 proc�� �loc���

loc� 	 ��loc� ! �xFF��� "" ���

loc� 	 �loc� ! ���

printf ��&��x$n�� loc���

loc� 	 proc�� ���

loc� 	 proc�� �loc�� loc���

loc� 	 proc�� �loc�� loc���

loc� 	 proc�� �loc�� loc���

printf ��&��x$n�� loc���

Figure ���	� Crc�b � Continued

��� dcc

��

� crc�clear�

� This function clears the CRC to zero� It should be called prior to

� the start of the processing of a block for both received messages�

� and messages to be transmitted�

�

� Calling sequence�

�

� short crc�

� crc 	 crc�clear���

��

short crc�clear��

�

return����

��

� crc�update�

� this function must be called once for each character which is

� to be included in the CRC for messages to be transmitted�

� This function is called once for each character which is included

� in the CRC of a received message� AND once for each of the two CRC

� characters at the end of the received message� If the resulting

� CRC is zero� then the message has been correctly received�

�

� Calling sequence�

�

� crc 	 crc�update�crc�next�char��

��

short crc�update�crc�crc�char�

short crc�

char crc�char�

�

long x�

short i�

�� �x� will contain the character to be processed in bits �
� and the CRC ��

�� in bits �
��� Bit �� will be used to test for overflow� and then cleared ��

�� to prevent the sign bit of �x� from being set to �� Bits �
�� are not ��

�� used� ��x� is treated as though it is a �� bit register�� ��

x 	 ��long�crc ## �� � crc�char� �� Get the CRC and the character ��

�� Repeat the following loop � times �for the � bits of the character�� ��

for�i 	 ��i # ��i���

�

Figure ����� Crc�c

�� Results ���

�� Shift the high
order bit of the character into the low
order bit of the ��

�� CRC� and shift the high
order bit of the CRC into bit ��� ��

x 	 x ## �� �� Shift �x� left one bit ��

�� Test to see if the old high
order bit of the CRC was a �� ��

if�x ! �x��������� �� Test bit �� of �x� ��

�� If the old high
order bit of the CRC was a �� exclusive
or it with a one ��

�� to set it to �� and exclusive
or the CRC with hex ���� to produce the ��

�� CCITT
recommended CRC generator of� X���� � X���� � X�� � �� To produce ��

�� the CRC generator of� X���� � X��� � X��� � �� change the constant from ��

�� �x�������� to �x�������� This will exclusive
or the CRC with hex ��� ��

�� and produce the same CRC that IBM uses for their synchronous transmission ��

�� protocols� ��

x 	 x (�x��������� �� Exclusive
or �x� with a�����

�� ���constant of hex �������� ��

�� And repeat � times� ��

 �� End of �for� loop ��

�� Return the CRC as the �� low
order bits of this function�s value� ��

return���x ! �x��ffff��� "" ���� �� AND off the unneeded bits and��� ��

�� ���shift the result � bits to the right ��

��

� crc�finish�

� This function must be called once after all the characters in a block

� have been processed for a message which is to be TRANSMITTED� It

� returns the calculated CRC bytes� which should be transmitted as the

� two characters following the block� The first of these � bytes

� must be taken from the high
order byte of the CRC� and the second

� must be taken from the low
order byte of the CRC� This routine is NOT

� called for a message which has been RECEIVED�

�

� Calling sequence�

�

� crc 	 crc�finish�crc��

��

short crc�finish�crc�

short crc�

�

�� Call crc�update twice� passing it a character of hex �� each time� to ��

�� flush out the last �� bits from the CRC calculation� and return the ��

�� result as the value of this function� ��

return�crc�update�crc�update�crc��$�����$�����

Figure ����� Crc�c � Continued

��� dcc

��

� This is a sample of the use of the CRC functions� which calculates the

� CRC for a �
character message block� and then passes the resulting CRC back

� into the CRC functions to see if the �received� �
character message and CRC

� are correct�

��

main��

�

short crc� �� The calculated CRC ��

char crc�char� �� The �
character message ��

char x� y� �� � places to hold the � �received� CRC bytes ��

crc�char 	 �A�� �� Define the �
character message ��

crc 	 crc�clear��� �� Reset the CRC to �transmit� a new message ��

crc 	 crc�update�crc�crc�char�� �� Update the CRC for the first��� ��

�� ����and only� character of the message ��

crc 	 crc�finish�crc�� �� Finish the transmission calculation ��

x 	 �char���crc ! �xff��� "" ��� �� Extract the high
order CRC byte ��

y 	 �char��crc ! �x��ff�� �� And extract the low
order byte ��

printf��&��x$n��crc�� �� Print the results ��

crc 	 crc�clear��� �� Prepare to �receive� a message ��

crc 	 crc�update�crc�crc�char�� �� Update the CRC for the first��� ��

�� ����and only� character of the message ��

crc 	 crc�update�crc�x�� �� Pass both bytes of the �received���� ��

crc 	 crc�update�crc�y�� �� ���CRC through crc�update� too ��

printf��&��x$n��crc�� �� If the result was �� then the message��� ��

�� ���was received without error ��

Figure ����� Crc�c � Continued

Subroutine Low�level High�level Reduction
proc � � � 	����
LXLSH' �� �� �����
LXRSH' �� � �����
proc � 	 	���
proc � �� � �����
main �� � 	���
total ��� �	 ����	

Figure ����� Crc Statistics

�� Results ��

����� Matrixmu

Matrixmu is a program that multiplies two matrixes� This program is incomplete in the
sense that it does not initialize the matrixes� but was decompiled to show that the forward
substitution method of Chapter �� Section ������ is able to
nd array expressions� The
conversion of this expression into an array was not done in dcc� but was explained in
Chapter �� Section ���� The disassembly program is shown in Figure ����� the decompiled
C program in Figure ���� and the initial C program in Figure ����� The call graph for this
program is as follows�

main

proc��

Both user procedures are decompiled with the same number of high�level instructions� ��
for the matrix multiplication procedure� and � for the main program� The reduction on the
number of instructions is over 	� due to the large number of low�level instructions involved
on the computation of an array o�set� In the disassembled version of the program� the basic
block at lines ��� to ��� of procedure proc�� has �� instructions which are converted into
two high�level instructions� a reduction of ����� intermediate instructions� Overall� this
program has a 	���� reduction of intermediate instructions� as shown in Figure �����

��� dcc

proc�� PROC NEAR

��� ����FA PUSH bp

��� ����FB �BEC MOV bp� sp

��� ����FD ��EC�� SUB sp� �

��� ������ � PUSH si

��� ������ � PUSH di

�� ������ ��F� XOR si� si

��� ������ ��FE� L�� CMP si�

��� �����B �C�� JL L�

��� �����D F POP di

��� �����E E POP si

��� �����F �BE MOV sp� bp

��� ������ D POP bp

��� ������ C� RET

��� ������ ��FF L�� XOR di� di

��� ������ ��FF�� L�� CMP di� �

��� ����� �C�� JL L�

��� ������ �� INC si

��� JMP L� �Synthetic inst

��� �����A C���FE���� L�� MOV word ptr �bp
��� �

��� �����B ���EFE�� L� CMP word ptr �bp
��� �

��� �����F �CA� JL L�

��� ������ �� INC di

�� JMP L� �Synthetic inst

��� ������ �BDE L�� MOV bx� si

��� ������ D�E� SHL bx� �

��� ����� D�E� SHL bx� �

��� ������ D�E� SHL bx� �

��� ������ ��E�� ADD bx� �bp���

��� �����C �B��FE MOV ax� �bp
��

��� �����F D�E� SHL ax� �

��� ������ ��D� ADD bx� ax

��� ������ �B�� MOV ax� �bx�

�� ����� � PUSH ax

��� ������ �B��FE MOV ax� �bp
��

��� ������ BA�A�� MOV dx� �Ah

��� �����C F�E� MUL dx

��� �����E �BD� MOV bx� ax

��� ������ ��E�� ADD bx� �bp���

��� ������ �BC� MOV ax� di

��� ����� D�E� SHL ax� �

��� ������ ��D� ADD bx� ax

��� ������ � POP ax

Figure ����� Matrixmu�a

�� Results ���

�� �����A F��� MUL word ptr �bx�

��� �����C � PUSH ax

��� �����D �BC� MOV ax� si

��� �����F BA�A�� MOV dx� �Ah

��� ������ F�E� MUL dx

�� ������ �BD� MOV bx� ax

�� ������ ��E�� ADD bx� �bp���

�� ������ �BC� MOV ax� di

�� �����B D�E� SHL ax� �

�� �����D ��D� ADD bx� ax

� �����F � POP ax

�� ����� ���� ADD ax� �bx�

�� ����� � PUSH ax

�� ����� �BC� MOV ax� si

�� ���� BA�A�� MOV dx� �Ah

��� ����� F�E� MUL dx

��� ����A �BD� MOV bx� ax

��� ����C ��E�� ADD bx� �bp���

��� ����F �BC� MOV ax� di

��� ������ D�E� SHL ax� �

�� ������ ��D� ADD bx� ax

��� ����� � POP ax

��� ������ ���� MOV �bx�� ax

��� ������ FF��FE INC word ptr �bp
��

��� JMP L �Synthetic inst

proc�� ENDP

main PROC NEAR

��� ������ PUSH bp

��� ������ �BEC MOV bp� sp

��� ������ ��EC�� SUB sp� ��h

��� ������ �D��D� LEA ax� �bp
��h�

��� �����C � PUSH ax

�� �����D �D��B� LEA ax� �bp
�h�

��� ������ � PUSH ax

��� ������ �D���� LEA ax� �bp
��h�

��� ������ � PUSH ax

��� ����� E���FF CALL near ptr proc��

��� ������ ��C��� ADD sp� �

��� �����B �BE MOV sp� bp

��� �����D D POP bp

��� �����E C� RET

main ENDP

Figure ����� Matrixmu�a � Continued

��� dcc

��

� Input file � matrixmu�exe

� File type � EXE

��

'include �dcc�h�

void proc�� �int arg�� int arg�� int arg��

�� Takes � bytes of parameters�

� High
level language prologue code�

� C calling convention�

��

�

int loc��

int loc��

int loc��

loc� 	 ��

while ��loc� # �� �

loc� 	 ��

while ��loc� # ��� �

loc� 	 ��

while ��loc� # ��� �

�����loc� � ��� � arg�� � �loc� ## ���� 	

�������loc� ## �� � arg�� � �loc� ## ���� �

�����loc� � ��� � arg�� � �loc� ## ����� �

�����loc� � ��� � arg�� � �loc� ## ������

loc� 	 �loc� � ���

loc� 	 �loc� � ���

loc� 	 �loc� � ���

void main ��

�� Takes no parameters�

� High
level language prologue code�

��

�

int loc��

int loc��

int loc��

proc�� �!loc�� !loc�� !loc���

Figure ���� Matrixmu�b

�� Results ���

'define n

'define m �

static void multMatrix �int a�n��m�� int b�m��n�� int c�n��n��

� int i�j�k�

for �i	�� i#n� i���

for �j	�� j#m� j���

for �k	�� k#m� k���

c�i��j� 	 a�i��k� � b�k��j� � c�i��j��

main��

� int a�n��m�� b�n��m�� c�n��m��

multMatrix �a� b� c��

Figure ����� Matrixmu�c

Subroutine Low�level High�level Reduction
proc � �� �� 	����
main �� � ��	�
total 	� �� 	����

Figure ����� Matrixmu Statistics

��	 dcc

����� Overall Results

The summary results of the �� programs that were presented in the previous sections
are given in Figure ����� The total number of low�level intermediate instructions is ����
compared with the
nal ��� high�level instructions� which gives a reduction of instructions
of ���� � This reduction of instructions is mainly due to the optimizations performed
during data �ow analysis� particularly extended register copy propagation �Chapter ��
Section �������� The recognition of idioms in the low�level code also reduces the number of
instructions and helps in the determination of data types such as long integers� Decompiled
programs have the same number of user subroutines� plus any runtime support routines
used in the program� These latter routines are sometimes translatable into a high�level
representation� assembler is generated whenever they are untranslatable�

Program Low�level High�level Reduction
intops �� �� ����	
byteops �	 �� 	���
longops ��� �	 �	���
benchsho ��� � ����
benchlng ��� 	 ���	�
benchmul 		 � 	����
benchfn 	 �� �����

bo �	 �� 	����
crc ��� �	 ����	
matrixmu 	� �� 	����
total ��� ��� ����

Figure ����� Results for Tested Programs

Chapter �

Conclusions

T his thesis has presented techniques for the reverse compilation or decompilation of bi�
nary programs� and provided algorithms for the implementation of the di�erent phases

of the decompiler� The methodology was implemented and tested in a prototype decom�
piler� dcc� which runs under DOS and Unix�

Decompilers use similar principles and techniques used in compilers� A decompiler has
seven di�erent phases� which incorporate compiler and optimization phases� There is no
lexical analysis phase due to the simplicity of the source machine language� The syntax
analysis phase parses the source binary program separating code from data� and placing
data references in the symbol table� The main di�culty with the separation of code from
data is that they are represented in the same way in von Neumann machines� The in�
termediate code generation phase generates a low�level intermediate representation of the
program� The semantic analysis phase checks the semantic meaning of groups of low�level
instructions �idioms�� gathers type information� and propagates it across the intermediate
representation� The control �ow graph generation phase generates a control �ow graph of
each subroutine of the program� and attaches the intermediate representation information
to the nodes of the graph� The data �ow analysis phase analyzes the low�level intermediate
code and converts it into a high�level intermediate representation available in any high�level
language� The transformation of instructions eliminates all low�level references to condition
codes and registers� and introduces the high�level concept of expression� Subroutines that
are not representable in a high�level language are �agged� The structure of the program
is analyzed in the control �ow analysis phase� which structures the control �ow graphs of
each subroutine in the program� Finally� the code generation phase generates high�level
code based on the high�level intermediate representation and the structured graph of each
subroutine�

A complete decompilation of a program makes use of not only the decompiler but other
related tools� the loader� the signature generator� the prototype generator� the disassembler�
and the postprocessor� The loader loads the source binary program into memory� the signa�
ture generator generates signatures for known compilers and their libraries �if required�� the
prototype generator determines the formal argument types for library subroutines� the dis�
assembler parses the program and produces an assembler output
le� the decompiler makes
use of the signature information to reduce the number of subroutines to decompile �i�e� it
does not attempt to decompile library routines if they are recognized by a signature or the
loader�� and the postprocessor transforms the output decompiled high�level program into
a semantically equivalent program that makes use of speci
c control structures available

��� Conclusions

in the target language� In practice� a decompiler can take as input a binary program or
an assembler program� and produce a high�level language output program� Most literature
available on decompilers make use of the latter approach� an assembler source program�
This thesis concentrates on source binary programs� which have far less information than
assembler programs�

The techniques described in this thesis are general enough to construct decompilers for dif�
ferent machine architectures� The phases are grouped into � di�erent modules that separate
machine and language dependent features� the front�end is a machine dependent module
that parses the source binary program and produces a low�level intermediate representation
of the program and a control �ow graph of each subroutine� the universal decompiling ma�
chine is a machine and language independent module that analyzes the intermediate code
and the structure of the graph�s� and generates a high�level intermediate representation of
the program and a structured graph�s�� and the back�end is a target language dependent
module that generates high�level target code from the intermediate representation and the
structure of the graph� In this way� a decompiler for a di�erent machine can be built by
writing a new front�end for that machine� and a decompiler for a di�erent target high�level
language can be built by writing a new back�end for the target language� This approach is
limited in practice by the choice of low�level intermediate language representation�

The signi
cant contributions of this thesis are the types of analyses done in the universal
decompiling machine� data �ow analysis and control �ow analysis� which transform the
low�level �machine�like� intermediate code into a high�level �HLL�like� intermediate rep�
resentation� The data �ow analyzer describes optimization techniques based on compiler
optimization principles� which eliminate the low�level concepts of condition codes and regis�
ters� and introduces the high�level concept of expression� These techniques take into account
interprocedural analysis� register spilling� and type propagation� The control �ow analyzer
describes structuring algorithms to determine the underlying high�level control structures
of the program� These algorithms structure the graph according to a prede
ned� generic
set of control structures available in most commonly used languages�

The implementation of these techniques in the prototype decompiler dcc demonstrates the
feasibility of the presented techniques� dcc is a decompiler for the DOS operating system
and the Intel i	�	� machine architecture which generates target C programs� This decom�
piler runs on a DecStation ���� under Unix� and on Intel machines under DOS� dcc makes
use of compiler and library signature recognition to decompile user routines only �whenever
possible�� rather than decompiling compiler start�up and library routines as well� When�
ever a compiler signature is not determined� all subroutines available in the source binary
program are decompiled� several of the library and compiler start�up routines are untrans�
latable into a high�level language representation and hence are disassembled only� dcc
provides comments for each subroutine� and has command switches to generate the bitmap
of the program� the call graph� an output assembler
le� statistics on the number of low�level
and high�level instructions in each subroutine� and information on the control �ow graph
of each subroutine�

Decompilation is used in two main areas of computer science� software maintenance and
security� A decompiler is used in software maintenance to recover lost or inaccessible source

Conclusions ���

code� translate code written in an obsolete language into a newer language� structure old
code written in an unstructured way �i�e� spaghetti code�� migrate applications to a new
hardware platform� and debug binary programs that are known to have a bug� In security�
a decompiler is used to verify binary programs and the correctness of the code produced by
a compiler for safety�critical systems� where the compiler is not trusted to generate correct
code� and to check for the existence of malicious code such as viruses�

Further work on decompilation can be done in two areas� the separation of code and data�
and the determination of data types such as arrays� records� and pointers� The former
area needs a robust method of determining n�way branch statements �i�e� indexed jumps�
and indirect subroutine calls� The latter area needs heuristic methods to identify di�erent
types of compound data types and propagate their values� E�cient implementation of the
algorithms would provide a faster decompiler� although the speed of decompilation is not a
concern given that a program is normally decompiled once only�

Appendix A

i��	 � i���	 Architecture

T he Intel iAPX 	�	�� 	�		� 	��	� and 	�	� machine architectures consist of the same
type of registers� memory structure and input�output port organization�Int	�� Int	���

These architectures are downwards compatible� hence the 	�	� supports all machine in�
structions supported by the 	�	� architecture� The registers of these ���bit word machines
are classi
ed into
ve di�erent sets according to their usage� data� pointer� index� control�
and segment registers� this classi
cation is shown in Figure A���

Type Register Function
Data ax accumulator

bx base register in some addressing modes
cx counter
dx general purpose

Pointer sp stack pointer
bp base pointer

Index si source
di destination

Control ip instruction pointer
�ags �ags or status word

Segment cs code segment
ds data segment
ss stack segment
es extra segment

Figure A��� Register Classi
cation

Data or general purpose registers can be accessed as word or byte registers� Each register
has a high and low byte with the following naming convention� register names that replace
the x by a h access the high byte of that register� and register names that replace the x
by an l access the low byte of that register� The �ags register is a special purpose register
that keeps track of the condition codes set up by di�erent instructions� The structure of
this register is shown in Figure A�� As can be seen� not all bits are used� unused bits are
reserved by Intel�

Memory is structured as an array of 	�bit bytes stored in little�endian convention �i�e� most
signi
cant byte of a word is stored at the highest memory address�� Memory is divided

�� i���� � i����� Architecture

cp

o
 over�ow

azstido

���

c
 carry
p
 parity
a
 auxiliary carry
z
 zero
s
 sign
t
 trap
i
 interrupt

d
 direction

Figure A�� Structure of the Flags Register

into banks of segments� each segment is a linear sequence of ��K bytes� therefore memory
is addressed via a segment and o�set pair�

Input�output port organization consists of up to ��Kb of 	�bit ports or �Kb of ���bit
ports� located in a separate addressing space from the memory space�

A�� Instruction Format

The length of an 	�	� instruction varies from � up to � bytes� There are two types of
opcodes� ��byte opcodes and compound opcodes� ��byte opcodes use the
rst byte of an
instruction as the opcode� followed by the
elds byte� at most bytes of displacement� and
at most bytes of data� The
elds byte contains information about registers� immediate
operands� and�or displacement data� Compound opcodes store part of the opcode in the

rst byte of the instruction� and part in three bits of the second byte of the instruction �see
Figure A���� The
rst byte determines the group table to which the instruction belongs�
and the ��bit opcode of the second byte determines the index into the table �i�e� there are
	 entries into the table�� The remaining bits of the second byte are used as the
elds byte�
The rest of the instruction is structured in the same way as for ��byte opcodes�LG	���

opcode

Figure A��� Compound Opcodes� Second Byte

In the 	�	�� almost all byte combinations are valid opcodes� There are � ��byte opcodes�
� compound�opcodes and � pre
x instructions� A complete list of the machine language
instructions� mnemonics and operands is found in Section A��

The
elds byte is used to calculate the e�ective address �EA� of the operand� This byte is
made up of �
elds� the reg ��bit
eld which takes the value of a register� the r�m ��bit

eld which is used as a second register or a memory operand� and the mod �bit
eld which

A�� Instruction Format ��

r�mregmod

Figure A��� The Fields Byte

determines the number of displacement bytes �DISP�� whether r�m is used as a register or
a memory operand� or the e�ective address of instructions that are not indexed nor based�
indexed� The structure of this byte is shown in Figure A��� An algorithm to interpret the

elds byte is shown in Figure A���

case �mod� of �

�� if �r�m 		 �� �� get � bytes displacement ��

EA 	 dispHi�dispLo�

else �� no extra bytes ��

DISP 	 ��

�� �� get � byte displacement ��

DISP 	 dispLo sign
extended to �� bits�

�� �� get � bytes displacement ��

DISP 	 dispHi�dispLo�

�� �� Indexed ��

r�m is treated as a register field�

Figure A��� Algorithm to Interpret the Fields Byte

The EA for indexed and based�indexed operands is calculated according to the r�m
eld�
each value is mapped to an indexed register or a combination of indexed and based registers�
as shown in Figure A���

Value of r�m Indexed register�s�
� bx ! si
� bx ! di
 bp ! si
� bp ! di
� si
� di
� bp
� bx

Figure A��� Mapping of r�m
eld

�� i���� � i����� Architecture

The
nal e�ective address is calculated as the addition of the displacement �DISP� and the
register�s� given by the r�m bits�

Each combination of mod� r�m values uses a default segment register for its addressing�
these default segments are shown in Figure A��� Although the e�ective address of an
operand is determined by the combination of the mod� r�m
elds� the
nal physical address
is calculated by adding the EA to the contents of the default segment register multiplied
by ��� As a general rule� when the bp register is used� the default segment is ss� otherwise
the default segment is ds�

r�m � mod � �
� DS DS DS
� DS DS DS
 SS SS SS
� SS SS SS
� DS DS DS
� DS DS DS
� DS SS SS
� DS DS DS

Figure A��� Default Segments

The segment override pre
x is a � byte opcode that permits exceptions to the default seg�
ment register to be used by the next instruction �i�e� it is only valid for � instruction� the
one that follows it�� The segment is determined by a �bit
eld �bits � and �� of the pre
x
byte� All other
elds take constant values� as illustrated in Figure A�	�

� � seg � � ��

Figure A�	� Segment Override Pre
x

There are two repeat pre
x opcodes� repne and repe� These opcodes repeat the execution
of the next instruction while register cx is not equal or equal to zero� They are normally
used with string instructions such as movs and ins to repeat a condition while it is not end
of string�

A�� Instruction Set

The instruction set of the i	�	� is described in terms of the machine opcode� the assembler
mnemonic� and the assembler operands to the instruction� The following conventions are
used to describe such an instruction set�

A�� Instruction Set ��

� reg	� 	�bit register�

� reg��� ���bit register�

� mem	� 	�bit memory value�

� mem��� ���bit memory value�

� immed	� 	�bit immediate value�

� immed��� ���bit immediate value�

� immed�� ��bit immediate value�

� segReg� ���bit segment register�

Figure A�� show all ��byte opcodes� Compound opcodes are referenced as indexes into a
table� each table has 	 posible values� The tables are shown in Figures A���� A���� A���
and A���� These
gures are summaries of
gures described in �Int	�� Int	���

�	 i���� � i����� Architecture

Machine Opcode Assembler Mnemonic and Operands
�� ADD reg	�mem	�reg	
�� ADD reg���mem���reg��
� ADD reg	�reg	�mem	
�� ADD reg���reg���mem��
�� ADD AL�immed	
�� ADD AX�immed��
�� PUSH es
�� POP es
�	 OR reg	�mem	�reg	
�� OR reg���mem���reg��
�A OR reg	�reg	�mem	
�B OR reg���reg���mem��
�C OR al�immed	
�D OR ax�immed��
�E PUSH cs
�F Not used
�� ADC reg	�mem	�reg	
�� ADC reg���mem���reg��
� ADC reg	�reg	�mem	
�� ADC reg���reg���mem��
�� ADC al�immed	
�� ADC ax�immed��
�� PUSH ss
�� POP ss
�	 SBB reg	�mem	�reg	
�� SBB reg���mem���reg��
�A SBB reg	�reg	�mem	
�B SBB reg���reg���mem��
�C SBB al�immed	
�D SBB ax�immed��
�E PUSH ds
�F POP ds
� AND reg	�mem	�reg	
� AND reg���mem���reg��
 AND reg	�reg	�mem	
� AND reg���reg���mem��
� AND al�immed	
� AND ax�immed��
� Segment override
� DAA

Figure A��� ��byte Opcodes

A�� Instruction Set �

Machine Opcode Assembler Mnemonic and Operands
	 SUB reg	�mem	�reg	
� SUB reg���mem���reg��
A SUB reg	�reg	�mem	
B SUB reg���reg���mem��
C SUB al�immed	
D SUB ax�immed��
E Segment override
F DAS
�� XOR reg	�mem	�reg	
�� XOR reg���mem���reg��
� XOR reg	�reg	�mem	
�� XOR reg���reg���mem��
�� XOR al�immed	
�� XOR ax�immed��
�� Segment override
�� AAA
�	 CMP reg	�mem	�reg	
�� CMP reg���mem���reg��
�A CMP reg	�reg	�mem	
�B CMP reg���reg���mem��
�C CMP al�immed	
�D CMP ax�immed��
�E Segment override
�F AAS
�� INC ax
�� INC cx
� INC dx
�� INC bx
�� INC sp
�� INC bp
�� INC si
�� INC di
�	 DEC ax
�� DEC cx
�A DEC dx
�B DEC bx
�C DEC sp
�D DEC bp
�E DEC si
�F DEC di

Figure A��� ��byte opcodes � Continued

�� i���� � i����� Architecture

Machine Opcode Assembler Mnemonic and Operands
�� PUSH ax
�� PUSH cx
� PUSH dx
�� PUSH bx
�� PUSH sp
�� PUSH bp
�� PUSH si
�� PUSH di
�	 POP ax
�� POP cx
�A POP dx
�B POP bx
�C POP sp
�D POP bp
�E POP si
�F POP di
�� PUSHA
�� POPA
� BOUND reg���mem���reg��
�� Not used
�� Not used
�� Not used
�� Not used
�� Not used
�	 PUSH immed��
�� IMUL reg���mem���immed��
�A PUSH immed	
�B IMUL reg	�mem	�immed	
�C INSB
�D INSW
�E OUTSB
�F OUTSW
�� JO immed	
�� JNO immed	
� JB immed	
�� JNB immed	
�� JZ immed	
�� JNZ immed	
�� JBE immed	
�� JA immed	

Figure A��� ��byte Opcodes � Continued

A�� Instruction Set ��

Machine Opcode Assembler Mnemonic and Operands
�	 JS immed	
�� JNS immed	
�A JP immed	
�B JNP immed	
�C JL immed	
�D JNL immed	
�E JLE immed	
�F JG immed	
	� Table reg	
	� Table reg��
	 Table reg	
	� Table reg	� reg��
	� TEST reg	�mem	�reg	
	� TEST reg���mem���reg��
	� XCHG reg	�reg	
	� XCHG reg���reg��
		 MOV reg	�mem	�reg	
	� MOV reg���mem���reg��
	A MOV reg	�reg	�mem	
	B MOV reg���reg���mem��
	C MOV reg���mem���segReg
	D LEA reg���reg���mem��
	E MOV segReg�reg���mem��
	F POP reg���mem��
�� NOP
�� XCHG ax�cx
� XCHG ax�dx
�� XCHG ax�bx
�� XCHG ax�sp
�� XCHG ax�bp
�� XCHG ax�si
�� XCHG ax�di
�	 CBW
�� CWD
�A CALL immed�
�B WAIT
�C PUSHF
�D POPF
�E SAHF
�F LAHF

Figure A��� ��byte Opcodes � Continued

�� i���� � i����� Architecture

Machine Opcode Assembler Mnemonic and Operands
A� MOV al��mem	�
A� MOV ax��mem���
A MOV �mem	��al
A� MOV �mem����ax
A� MOVSB
A� MOVSW
A� CMPSB
A� CMPSW
A	 TEST al��mem	�
A� TEST ax��mem���
AA STOSB
AB STOSW
AC LODSB
AD LODSW
AE SCASB
AF SCASW
B� MOV al�immed	
B� MOV cl�immed	
B MOV dl�immed	
B� MOV bl�immed	
B� MOV ah�immed	
B� MOV ch�immed	
B� MOV dh�immed	
B� MOV bh�immed	
B	 MOV ax�immed��
B� MOV cx�immed��
BA MOV dx�immed��
BB MOV bx�immed��
BC MOV sp�immed��
BD MOV bp�immed��
BE MOV si�immed��
BF MOV di�immed��
C� Table� reg	
C� Table� reg	� reg��
C RET immed��
C� RET
C� LES reg���mem���mem��
C� LDS reg���mem���mem��
C� MOV reg	�mem	�immed	
C� MOV reg���mem���immed��

Figure A��� ��byte Opcodes � Continued

A�� Instruction Set �

Machine Opcode Assembler Mnemonic and Operands
C	 ENTER immed��� immed	
C� LEAVE
CA RET immed��
CB RET
CC INT �
CD INT immed	
CE INTO
CF IRET
D� Table� reg	
D� Table� reg��
D Table� reg	
D� Table� reg��
D� AAM
D� AAD
D� Not used
D� XLAT �bx�
D	 ESC immed	
D� ESC immed	
DA ESC immed	
DB ESC immed	
DC ESC immed	
DD ESC immed	
DE ESC immed	
DF ESC immed	
E� LOOPNE immed	
E� LOOPE immed	
E LOOP immed	
E� JCXZ immed	
E� IN al�immed	
E� IN ax�immed��
E� OUT al�immed	
E� OUT ax�immed��
E	 CALL immed��
E� JMP immed��
EA JMP immed�
EB JMP immed	
EC IN al�dx
ED IN ax�dx
EE OUT al�dx
EF OUT ax�dx

Figure A��� ��byte Opcodes � Continued

��� i���� � i����� Architecture

Machine Opcode Assembler Mnemonic and Operands
F� LOCK
F� Not used
F REPNE
F� REP
F� HLT
F� CMC
F� Table� reg	
F� Table� reg��
F	 CLC
F� STC
FA CLI
FB STI
FC CLD
FD STD
FE Table� reg	
FF Table� reg��

Figure A��� ��byte Opcodes � Continued

Index Assembler Mnemonic
� ROL
� ROR
 RCL
� RCR
� SHL
� SHR
� Not used
� SAR

Figure A���� Table� Opcodes

A�� Instruction Set ���

Index Assembler Mnemonic
� ADD
� OR
 ADC
� SBB
� AND
� SUB
� XOR
� CMP

Figure A���� Table Opcodes

Index Assembler Mnemonic
� TEST
� Not used
 NOT
� NEG
� MUL
� IMUL
� DIV
� IDIV

Figure A��� Table� Opcodes

Index Assembler Mnemonic
� INC
� DEC
 CALL
� CALL
� JMP
� JMP
� PUSH
� Not used

Figure A���� Table� Opcodes

Appendix B

Program Segment Pre�x

T he program segment pre
x or PSP is a ���byte block of information� apparently a
remnant of the CP�M operating system� that was adopted to assist in porting CP�M

programs to the DOS environment�Dun		b�� When a program is loaded into memory� a
PSP is built on the
rst �� bytes of the allocated memory block� The
elds of the PSP
are shown in Figure B���

Segment o�set Description
��h terminate vector� interrupt �h �transfer to DOS�
�h last segment allocated
��h reserved
��h call vector function� far call to DOS�s function request handler
�Ah copy of the parent�s program termination handler vector
�Eh copy of the parent�s control�c�control�break handler vector
�h copy of the parent�s critical error handler vector
��H reserved
Ch address of the
rst paragraph of the DOS environment
Eh reserved
��h interrupt �h� return far �retf� instruction
��h reserved
�Ch
rst parameter from the command line
�Ch second parameter from the command line
	�h command tail� used as a bu�er

Figure B��� PSP Fields

The terminate vector �o�set ��h of the PSP� used to be the warm boot�terminate
�WBOOT� vector under CP�M� The call vector function �o�set ��h of the PSP� used
to be the basic disk operating system �BDOS� vector under CP�M�

Appendix C

Executable File Format

T he DOS operating system supports two di�erent types of executable
les� �exe and �com

les� The former allows for large programs and multiple segments to be used in memory�

the latter for small programs that
t into one segment �i�e� ��Kb maximum� �Dun		b��

C�� �exe Files

The �exe
le consists of a header and a load module� as shown in Figure C��� The
le
header consists of 	 bytes of
xed formatted area� and a relocation table which varies in
size� The load module is a fully linked image of the program� there is no information on
how to separate segments in the module since DOS ignores how the program is segmented�

�

�

Formatted area

end of �le

Relocation table

Load module

start of �le

Figure C��� Structure of an �exe File

The structure of the header�s formatted area is shown in Figure C�� The size of a page is
�� bytes� and the size of a paragraph is �� bytes� The program image size is calculated
from the value in the formatted area as the di�erence between the
le size and the header
size� The
le size is given by the number of
le pages �rounded up� and the size in bytes of
the last page�

The relocation table is a list of pointers to words within the load module that must be
adjusted� These words are adjusted by adding the start segment address where the program
is to be loaded� Pointers in this table are stored as words relative to the start of the load
module�

��� Executable File Format

Bytes Description
�����h �exe signature ��Dh� �Ah�
����h number of bytes in the last page
�����h number of pages �rounded up�
�����h number of entries in the relocation table
�	���h number of paragraphs in the header
�A��Bh minimum number of paragraphs required for data and stack
�C��Dh maximum number of memory paragraphs
�E��Fh pre�relocated initial ss value
�����h initial sp value �absolute value�
����h complemented checksum ���s complement�
�����h initial ip value
�����h pre�relocated initial value of cs
�	���h relocation table o�set
�A��B overlay number �default� ����h�

Figure C�� Fixed Formatted Area

C�� �com Files

A �com
le is an image program without a header �i�e� equivalent to the load module of an
�exe
le�� hence the program is loaded into memory �as is�� As opposed to �exe programs�
�com programs can only use one segment �up to ��Kb�� These programs were designed to
transport programs from CP�M into the DOS environment�

Appendix D

Low�level to High�level Icode Mapping

T he mapping between low�level and high�level Icodes is shown in the following pages �Fig�
ure D���� A dash ��� in the high�level Icode column means that there is no high�level

counter part to the low�level icode� an asterisk ��� means that the low�level Icode forms part
of a high�level instruction only when in an idiom� an f means that an Icode �ag is set and
the instruction is not considered any further� a cc means that the low�level instruction sets
a condition code� it does not have a high�level counterpart� and is eliminated by condition
code propagation� and an n means that the low�level Icode instruction was not considered
in the analysis� Instructions marked with an n deal with machine string instructions� and
were not considered in the analysis performed by dcc�

The initial mapping of low�level to high�level Icodes is expressed in terms of registers�
Further data �ow analysis on the Icodes transforms these instructions into expressions that
do not make use of temporary registers� only variables and register variables �if any��

��� Low�level to High�level Icode Mapping

Low�level Icode High�level Icode
iAAA �
iAAD �
iAAM �
iAAS �
iADC �
iADD asgn ���
iAND asgn �"�
iBOUND f
iCALL call

iCALLF call

iCLC cc
iCLD cc
iCLI �
iCMC cc
iCMP cc
iCMPS n
iREPNE CMPS n
iREPE CMPS n
iDAA �
iDAS �
iDEC asgn �
 ��
iDIV asgn ���
iENTER f
iESC f
iHLT �
iIDIV asgn ���
iIMUL asgn ���
iIN �
iINC asgn �� ��
iINS �
iREP INS �
iINT �
iINTO �
iIRET �
iJB jcond ���
iJBE jcond ��	�
iJAE jcond ��	�
iJA jcond ���
iJE jcond �		�
iJNE jcond ����

Figure D��� Icode Opcodes

Low�level to High�level Icode Mapping ��

Low�level Icode High�level Icode
iJL jcond ���
iJGE jcond ��	�
iJLE jcond ��	�
iJG jcond ���
iJS jcond �� ��
iJNS jcond �� ��
iJO �
iJNO �
iJP �
iJNP �
iJCXZ jcond �cx 		 ��
iJNCXZ jcond �cx �� ��
iJMP jmp

iJMPF jmp

iLAHF �
iLDS asgn �far pointer�
iLEA asgn �near pointer�
iLEAVE ret

iLES asgn �far pointer�
iLOCK �
iLODS n
iREP LODS n
iMOV asgn �	�
iMOVS n
iREP MOVS n
iMOD asgn ���
iMUL asgn ���
iNEG asgn �
�
iNOT !

iNOP �
iOR asgn �#�
iOUT �
iOUTS �
iREP OUTS �
iPOP pop

iPOPA �
iPOPF �
iPUSH push

iPUSHA �
iPUSHF �

Figure D��� Icode Opcodes � Continued

��� Low�level to High�level Icode Mapping

Low�level Icode High�level Icode
iRCL �
iRCR �
iREPE n
iREPNE n
iRET ret

iRETF ret

iROL �
iROR �
iSAHF �
iSAR �
iSHL asgn ����
iSHR asgn ����
iSBB �
iSCAS n
iREPNE SCAS n
iREPE SCAS n
iSIGNEX asgn �	�
iSTC cc
iSTD cc
iSTI �
iSTOS n
iREP STOS n
iSUB asgn �
�
iTEST cc
iWAIT f
iXCHG asgn �uses tmp�
iXLAT �
iXOR asgn �$�

Figure D��� Icode Opcodes � Continued

Appendix E

Comments and Error Messages displayed by

dcc

d
cc displays a series of comments in the output C and assembler
les� on information
collected during the analysis of each subroutine� This information is displayed before

each subroutine� The following comments are supported by dcc�

� �Takes d bytes of parameters��

� �Uses register arguments�� �and lists the registers and the formal argument name��

� �Takes no parameters��

� �Runtime support routine of the compiler��

� �High�level language prologue code��

� �Untranslatable routine� Assembler provided��

� �Return value in register s�� �register�s� provided��

� �Pascal calling convention��

� �C calling convention��

� �Unknown calling convention��

� �Incomplete due to an unstranslatable opcode�

� �Incomplete due to an indirect jump�

� �Indirect call procedure��

� �Contains self�modifying code��

� �Contains coprocessor instructions��

� �Irreducible control �ow graph��

Assembler subroutines are also commented� as well as all DOS kernel services� interrupts
�h to Fh� Appendix F contains a list of all DOS interrupts supported by dcc�

dcc also displays two di�erent types of errors� fatal and non fatal errors� Fatal errors termi�
nate the execution of dcc� displaying the error with enough information to determine what

��� Comments and Error Messages displayed by dcc

happened� Non fatal errors do not cause dcc to terminate� and are treated as warnings to
the user�

The fatal errors supported by dcc are�

� �Invalid option � c��

� �Usage� dcc ��a�ampsvV���o asm
le� DOS executable�

� �New EXE format not supported��

� �Cannot open
le s��

� �Error while reading
le s��

� �Invalid instruction �X at location ��lX��

� �Don�t understand 	��	� instruction �X at location ��lX��

� �Instruction at location ��lX goes beyond loaded image��

� �malloc of ld bytes failed��

� �Failed to
nd a basic block for jump to ld in subroutine s��

� �Basic Block is a synthetic jump��

� �Failed to
nd a basic block for interval��

� �De
nition not found for condition code usage at opcode d��

The non fatal errors supported by dcc are�

� �Segment override with no memory operand at location ��lX��

� �REP pre
x without a string instruction at location ��lX��

� �Conditional jump use� de
nition not supported at opcode d��

� �De
nition�use not supported� De
nition opcode � d� use opcode � d��

� �Failed to construct do��while�� condition��

� �Failed to construct while�� condition��

Appendix F

DOS Interrupts

T he DOS kernel provides services to application programs via software interrupts
�h��Fh� Interrupt �h deals with character input�output�
les� records� directory

operations� disk� processes� memory management� network functions� and miscellaneous
system functions� the function number is held in register ah� Figure F�� lists the di�erent
interrupts provided by DOS �Dun		a�� These interrupts are commented by dcc when
producing the disassembly of a subroutine�

��	 DOS Interrupts

Interrupt Function Function name
�h Terminate process
�h �h Terminate process
�h �h Character input with echo
�h h Character output
�h �h Auxiliary input
�h �h Auxiliary output
�h �h Printer output
�h �h Direct console input�output
�h �h Un
ltered character input without echo
�h 	h Character input without echo
�h �h Display string
�h Ah Bu�ered keyboard input
�h Bh Check input status
�h Ch Flush input bu�er and then input
�h Dh Disk reset
�h Eh Select disk
�h Fh Open
le
�h ��h Close
le
�h ��h Find
rst
le
�h �h Find next
le
�h ��h Delete
le
�h ��h Sequential read
�h ��h Sequential write
�h ��h Create
le
�h ��h Rename
le
�h �	h Reserved
�h ��h Get current disk
�h �Ah Set DTA address
�h �Bh Get default drive data
�h �Ch Get drive data
�h �Dh Reserved
�h �Eh Reserved
�h �Fh Reserved
�h �h Reserved
�h �h Random read
�h h Random write
�h �h Get
le size
�h �h Set relative record number
�h �h Set interrupt vector
�h �h Create new PSP
�h �h Random block read
�h 	h Random block write

Figure F��� DOS Interrupts

DOS Interrupts ��

Interrupt Function Function name
�h �h Parse
lename
�h Ah Get date
�h Bh Set date
�h Ch Get time
�h Dh Set time
�h Eh Set verify �ag
�h Fh Get DTA address
�h ��h Get DOS version number
�h ��h Terminate and stay resident
�h �h Reserved
�h ��h Get or set break �ag
�h ��h Reserved
�h ��h Get interrupt vector
�h ��h Get drive allocation info
�h ��h Reserved
�h �	h Get or set country info
�h ��h Create directory
�h �Ah Delete directory
�h �Bh Set current directory
�h �Ch Create
le
�h �Dh Open
le
�h �Eh Close
le
�h �Fh Read
le or device
�h ��h Write
le or device
�h ��h Delete
le
�h �h Set
le pointer
�h ��h Get or set
le attributes
�h ��h IOCTL �input�output control�
�h ��h Duplicate handle
�h ��h Redirect handle
�h ��h Get current directory
�h �	h Alloate memory block
�h ��h Release memory block
�h �Ah Resize memory block
�h �Bh Execute program �exec�
�h �Ch Terminate process with return code
�h �Dh Get return code
�h �Eh Find
rst
le
�h �Fh Find next
le
�h ��h Reserved
�h ��h Reserved
�h �h Reserved
�h ��h Reserved

Figure F��� DOS Interrupts � Continued

��� DOS Interrupts

Interrupt Function Function name
�h ��h Get verify �ag
�h ��h Reserved
�h ��h Rename
le
�h ��h Get or set
le date and time
�h �	h Get or set allocation strategy
�h ��h Get extended error info
�h �Ah Create temporary
le
�h �Bh Create new
le
�h �Ch Lock or unlock
le region
�h �Dh Reserved
�h �Eh Get machine name
�h �Fh Device redirection
�h ��h Reserved
�h ��h Reserved
�h �h Get PSP address
�h ��h Get DBCS lead byte table
�h ��h Reserved
�h ��h Get extended country info
�h ��h Get or set code page
�h ��h Set handle count
�h �	h Commit
le
�h ��h Reserved
�h �Ah Reserved
�h �Bh Reserved
�h �Ch Extended open
le
h Terminate handler address
�h Ctrl�C handler address
�h Critical�error handler address
�h Absolute disk read
�h Absolute disk write
�h Terminate and stay resident
	h Reserved
�h Reserved
Ah Reserved
Bh Reserved
Ch Reserved
Dh Reserved
Eh Reserved
Fh �h Print spooler
Fh h Assign
Fh ��h Share
Fh B�h Append

Figure F��� DOS Interrupts � Continued

Bibliography

�AC�� F�E� Allen and J� Cocke� Graph theoretic constructs for program control �ow
analysis� Technical Report RC ��� �No� ���	��� IBM� Thomas J� Watson
Research Center� Yorktown Heights� New York� July ����

�AC��� F�E� Allen and J� Cocke� A program data �ow analysis procedure� Communica�
tions of the ACM� �������������� March �����

�All��� F�E� Allen� Control �ow analysis� SIGPLAN Notices� ���������� July �����

�All�� F�E� Allen� A basis for program optimization� In Proc� IFIP Congress� pages
�	������ Amsterdam� Holland� ���� North�Holland Pub�Co�

�All��� F�E� Allen� Interprocedural data �ow analysis� In Proc� IFIP Congress� pages
��	���� Amsterdam� Holland� ����� North�Holland Pub�Co�

�AM��� E� Ashcroft and Z� Manna� The translation of #go to� programs to #while�
programs� Technical report� Stanford University� Department of Computer
Science� �����

�ASU	�a� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers� Principles� Techniques� and
Tools� Addison�Wesley Publishing Company� ��	��

�ASU	�b� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers� Principles� Techniques� and
Tools� chapter ��� pages �	���� Addison�Wesley Publishing Company� ��	��

�Bak��� B�S� Baker� An algorithm for structuring �owgraphs� Journal of the ACM�
������	���� January �����

�Bar��� P� Barbe� The Piler system of computer program translation� Technical report�
Probe Consultants Inc�� September �����

�BB��� J� Bowen and P� Breuer� Decompilation techniques� Internal to ESPRIT REDO
project no� �	� �	��TN�PRG����� Version ��� Oxford University Computing
Laboratory� �� Keble Road� Oxford OX� �QD� March �����

�BB�� P�T� Breuer and J�P� Bowen� Decompilation� The enumeration of types and
grammars� Technical Report PRG�TR������ Oxford University Computing
Laboratory� �� Keble Road� Oxford OX� �QD� ����

�BB��� P�T� Breuer and J�P� Bowen� Decompilation� the enumeration of types and
grammars� To appear in Transaction of Programming Languages and Systems�
�����

�BB��� P�T� Breuer and J�P� Bowen� Generating decompilers� To appear in Information
and Software Technology Journal� �����

��� BIBLIOGRAPHY

�BBL��� J�P� Bowen� P�T� Breuer� and K�C� Lano� The REDO project� Final report�
Technical Report PRG�TR������ Oxford University Computing Laboratory� ��
Keble Road� Oxford OX� �QD� December �����

�BBL��� J� Bowen� P� Breuer� and K� Lano� A compendium of formal techniques for
software maintenance� Software Engineering Journal� pages ����� September
�����

�BJ��� C� B$ohm and G� Jacopini� Flow diagrams� Turing machines and languages with
only two formation rules� Communications of the ACM� ������������� May �����

�Bor�� Borland� Borland C Version ��	 � User�s Guide� Borland International� �	��
Green Hills Road� Scotts Valley� CA ������ ����

�Bow��� J� Bowen� From programs to object code using logic and logic programming�
In R� Giegerich and S�L� Graham� editors� Code Generation � Concepts� Tools�
Techniques� Workshops in Computing� pages ������� Dagstuhl� Germany� May
����� Springer Verlag�

�Bow��� J� Bowen� From programs to object code and back again using logic program�
ming� Compilation and decompilation� Journal of Software Maintenance� Re�
search and Practice� ����������� �����

�BP��� D� Balbinot and L� Petrone� Decompilation of Polish code in Basic� Rivista di
Informatica� ������������ October �����

�BP	�� M�N� Bert and L� Petrone� Decompiling context�free languages from their Polish�
like representations� pages ������ ��	��

�Bri	�� D�L� Brinkley� Intercomputer transportation of assembly language software
through decompilation� Technical report� Naval Underwater Systems Center�
October ��	��

�Bri��� Brillo brillig� EXE� 	������ October �����

�BZ	�� A�L� Baker and S�H� Zweben� A comparison of measures of control �ow
complexity� IEEE Transactions on Software Engineering� SE�������������
November ��	��

�Cal� C�A� Calkins� Masterful disassembler� Public domain software� Anonymous ftp
oak�oakland�edu�SimTel�msdos�disasm�md	��zip�

�CCHK��� D� Callahan� A� Carle� M�W� Hall� and K� Kennedy� Constructing the procedure
call multigraph� IEEE Transactions on Software Engineering� �������	���	��
April �����

�CG��� C� Cifuentes and K�J� Gough� A methodology for decompilation� In Proceedings
of the XIX Conferencia Latinoamericana de Inform�atica� pages ������ Buenos
Aires� Argentina� �� August ����� Centro Latinoamericano de Estudios en
Inform(atica�

BIBLIOGRAPHY ��

�CG��� C� Cifuentes and K�J Gough� Decompilation of binary programs� Technical
Report ����� Faculty of Information Technology� Queensland University of
Technology� GPO Box ���� Brisbane ����� Australia� April ����� �To appear
in ����� Software � Practice) Experience��

�Chr	�� W� Christensen� Resource for the 	�	�� Public domain software� Anonymous ftp
oak�oakland�edu�SimTel�msdos�disasm�res	��zip� ��	�� Translated to the 	�	�
by Larry Etienne�

�Cif��� C� Cifuentes� A structuring algorithm for decompilation� In Proceedings of
the XIX Conferencia Latinoamericana de Inform�atica� pages ������ Buenos
Aires� Argentina� �� August ����� Centro Latinoamericano de Estudios en
Inform(atica�

�Cif��a� C� Cifuentes� Interprocedural data �ow decompilation� Technical Report �����
Faculty of Information Technology� Queensland University of Technology� GPO
Box ���� Brisbane ����� Australia� April ����� �Submitted to Journal of
Programming Languages��

�Cif��b� C� Cifuentes� Structuring decompiled graphs� Technical Report ����� Faculty of
Information Technology� Queensland University of Technology� GPO Box ����
Brisbane ����� Australia� April ����� �Submitted to The Computer Journal��

�Cob��� Cobol decompiler� Midrange Systems� ��������� July �����

�Coc��� J� Cocke� Global common subexpression elimination� SIGPLAN Notices�
��������� July �����

�Col	�� J�W� Perry Cole� ANSI Fortran IV� A structured programming approach�
WM�C�Brown� ��� Kerper Boulevard� Dubuque� Iowa ����� 	 edition� ��	��

�Com��� V Communications� Sourcer � Commenting Disassembler� �
�� to �
��� In�
struction Set Support� V Communications� Inc� ��� Stevens Creek Blvd�� Suite
��� San Jose� CA ����� �����

�Coo��� D�C� Cooper� B$ohm and Jacopini�s reduction of �ow charts� Communications
of the ACM� ���	���������� August �����

�Coo	�� D� Cooper� Standard Pascal� User Reference Manual� W�W�Norton) Company�
��� Fifth Avenue� New York� N�Y� ������ � edition� ��	��

�Dav�	� M� Davis� Computability and Unsolvability� chapter �� pages ������ McGraw�
Hill� ���	�

�DoD	�� American National Standards Institute� Inc�� Department of Defense�
OUSD�R)E�� Washington� DC ����� USA� Reference Manual for the Ada
Programming Language� ANSI�MIL�STD�	�	�A�	���� February ��	��

�DS	� L�M� Dorsey and S�Y� Su� The decompilation of COBOL�DML programs for
the purpose of program conversion� In Proceedings of COMPSAC ��� IEEE
Computer Society�s Sixth International Computer Software and Applications
Conference� pages �������� Chicago� USA� November ��	� IEEE�

��� BIBLIOGRAPHY

�Dud	� R� Dudley� A recursive decompiler� FORTH Dimensions� ����	� Jul�Aug ��	�

�Dun		a� R� Duncan� Advanced MSDOS programming� Microsoft Press� ����� NE ��th
Way� Box ������ Redmond� Washington �	��������� edition� ��		�

�Dun		b� R� Duncan� The MSDOS Encyclopedia� chapter �� pages �������� Microsoft
Press� ��		�

�DZ	�� D�M� Dejean and G�W� Zobrist� A de
nition optimization technique used in a
code translation algorithm� Communications of the ACM� ������������ January
��	��

�EH��� A�M� Erosa and L�J� Hendren� Taming control �ow� A structured approach
to eliminating goto statements� Technical Report ACAPS Technical Memo ���
School of Computer Science� McGill University� ��	� University St� Montreal�
Canada H�A A�� September �����

�Emm��� M� Van Emmerik� Signatures for library functions in executable
les� Technical
Report ���� Faculty of Information Technology� Queensland University of
Technology� GPO Box ���� Brisbane ����� Australia� April �����

�FJ		a� C�N� Fischer and R�J� LeBlanc Jr� Crafting a Compiler� Benjamin Cummings�
�� Sand Hill Road� Menlo Park� California ����� ��		�

�FJ		b� C�N� Fischer and R�J� LeBlanc Jr� Crafting a Compiler� chapter ��� pages ����
�	�� Benjamin Cummings� �� Sand Hill Road� Menlo Park� California �����
��		�

�Flu	�� B�H� Flusche� The art of disassembly� getting to the source of the problem when
the object�s the data� Micro Cornucopia� �����	���� March � April ��	��

�Fre��� P� French� Private communication� Email� �����

�Fri��� F�L� Friedman� Decompilation and the Transfer of Mini�Computer Operating
Systems� PhD dissertation� Purdue University� Computer Science� August �����

�FZ��� C� Fuan and L� Zongtian� C function recognition technique and its implemen�
tation in 	�	� C decompiling system� Mini�Micro Systems� ���������������
�����

�FZL��� C� Fuan� L� Zongtian� and L� Li� Design and implementation techniques of the
	�	� C decompiling system� Mini�Micro Systems� ����������	���� �����

�Gai��� R�S� Gaines� On the translation of machine language programs� Communications
of the ACM� 	������������ December �����

�Gar		� P�D� Garnett� Selective disassembly� a
rst step towareds developing a virus

lter� Fourth Aerospace Computing Security Appl Conference� pages ���
December ��		�

BIBLIOGRAPHY ���

�GCC��� K�J� Gough� C� Cifuentes� D� Corney� J� Hynd� and P� Kolb� An experiment
in mixed compilation�interpretation� In G�K�Gupta and C�D�Keen� editors�
Proceedings of the Fifteenth Australian Computer Science Conference �ACSC�
	��� pages ������� University of Tasmania� Hobart� Australia� ���� January
���� Australian Computer Society�

�GD	�� J� Gersbach and J� Damke� Asmgen� version ���� Public domain software�
Anonymous ftp oak�oakland�edu�SimTel�msdos�disasm�asmgen��zip� ��	��

�GL	� L� Goldschlager and A� Lister� Computer Science� A modern introduction�
Prentice�Hall International� ��	�

�Gou		� K�J� Gough� Syntax Analysis and Software Tools� Addison Wesley Publishing
Company� Reading� U�K�� ��		�

�Gou��� K�J� Gough� Private communication� �����

�Gut��� S� Guthery� exec� News item in comp�compilers USENET newsgroup� �� Apr
�����

�Gut��a� S� Guthery� exec� News item in comp�compilers USENET newsgroup� � Apr
�����

�Gut��b� S� Guthery� Private communication� Austin Code Works� ����� Leafwood Lane�
Austin� TX �	������	�� �� Dec �����

�Hal�� M�H� Halstead� Machine�independent computer programming� chapter ��� pages
�������� Spartan Books� ����

�Hal��� M�H� Halstead� Machine independence and third generation computers� In
Proceedings SJCC �Sprint Joint Computer Conference�� pages �	����� �����

�Hal��� M�H� Halstead� Using the computer for program conversion� Datamation� pages
������ May �����

�Hec��� M�S� Hecht� Flow Analysis of Computer Programs� Elsevier North�Holland� Inc�
� Vanderbilt Avenue� New York� New York ������ �����

�HH��� B�C� Housel and M�H� Halstead� A methodology for machine language decom�
pilation� Technical Report RJ ���� �*������ Purdue University� Department
of Computer Science� December �����

�HHB���� P� Heiser� D� Hanson� C� Berntson� K� Everett� and A� Schwartz� Feedback� Data
Based Advisor� ������������ June �����

�HK�� M�W� Hall and K� Kennedy� E�cient call graph analysis� Letters on Program�
ming Languages and Systems� ��������� September ����

�HM��� R�N� Horspool and N� Marovac� An approach to the problem of detranslation of
computer programs� The Computer Journal� ��������� �����

�HM	�� N�L� Hills and D� Moines� Revisited� Recursive decompiler� FORTH Dimensions�
���������	� Mar�Apr ��	��

��� BIBLIOGRAPHY

�Hol��� C�R� Hollander� Decompilation of Object Programs� PhD dissertation� Stanford
University� Computer Science� January �����

�Hoo��� S�T� Hood� Decompiling with de
nite clause grammars� Technical Report ERL�
�����RR� Electronics Research Laboratory� DSTO Australia� PO Box �����
Salisbury� South Australia ���	� September �����

�Hop�	� G�L� Hopwood� Decompilation� PhD dissertation� University of California�
Irvine� Computer Science� ���	�

�Hou��� B�C� Housel� A Study of Decompiling Machine Languages into High�Level Ma�
chine Independent Languages� PhD dissertation� Purdue University� Computer
Science� August �����

�HU�� M�S� Hecht and J�D� Ullman� Flow graph reducibility� SIAM Journal of
Computing� �����		��� June ����

�HU��� M�S� Hecht and J�D� Ullman� Characterizations of reducible �ow graphs� Journal
of the ACM� ������������� July �����

�HU��� M� Hecht and J� Ullman� A simple algorithm for global data �ow analysis
problems� SIAM Journal of Computing� ������������ December �����

�HZY��� L� Hungmong� L� Zongtian� and Z� Yifen� Design and implementation of
the intermediate language in a PC decompiler system� Mini�Micro Systems�
������	���� �����

�Int	�� Intel� iAPX ������ 	���	�� User�s Manual� Intel Corporation� ���� Bowers
Avenue� Santa Clara� CA ������ ��	��

�Int	�� Intel� �
��� and �
�� Programmer�s Reference Manual� Intel Corporation�
���� Bowers Avenue� Santa Clara� CA ������ ��	��

�KF��� D�E� Knuth and R�W� Floyd� Notes on avoiding go to statements� Information
Processing Letters� ���������� �����

�Knu��� D�E� Knuth� Structured programming with go to statements� Computing
Surveys� ������������ December �����

�Kos��� S�R� Kosaraju� Analysis of structured programs� Journal of Computer and
System Sciences� ���������� �����

�KR		� B�W� Kernighan and D�M� Ritchie� The C Programming Language� Prentice�
Hall� Inc� Englewood Cli�s� N�J�� edition� ��		�

�KW	� R�H� Katz and E� Wong� Decompiling CODASYL DML into relational queries�
ACM Transactions on Database Systems� ��������� March ��	�

�LG	�� Y�C� Liu and G�A� Gibson� Microcomputer Systems� the �
����
�� family�
Prentice�Hall International� New Jersey� edition� ��	��

BIBLIOGRAPHY ���

�Lic	�� U� Lichtblau� Decompilation of control structures by means of graph transfor�
mations� In Proceedings of the International Joint Conference on Theory and
Practice of Software Development �TAPSOFT�� Berlin� ��	��

�Lic��� U� Lichtblau� Recognizing rooted context�free �owgraph languages in polynomial
time� In G� Rozenberg H� Ehrig� H�J� Kreowski� editor� Graph Grammars and
their application to Computer Science� number �� in Lecture Notes in Computer
Science� pages ��	���	� Springer�Verlag� �����

�LM��� H�F� Ledgard and M� Marcotty� A genealogy of control structures� Communi�
cations of the ACM� �	������������ November �����

�Mak��� O�J� Makela� Intelligent disassembler� version ��� Public domain software�
Anonymous ftp oak�oakland�edu�SimTel�msdos�disasm�id��zip� �����

�May		� W� May� A simple decompiler� Dr�Dobb�s Journal� pages ����� June ��		�

�Mic	�� Microsoft� Mixed�Language Programming Guide� Microsoft Corporation� �����
NE ��th Way� Box ������ Redmond� WA �	��������� ��	��

�MZBR	�� W�K� Marshall� G�W� Zobrist� W� Bach� and A� Richardson� A functional
mapping for a microprocessor system simulation� In Proceedings of the ��	�
IEEE Microprocessor Forum �Atlantic City� N�J�� Apr����� IEEE Piscataway�
N�J� pp������� ��	��

�Oul	� G� Oulsnam� Unravelling unstructured programs� The Computer Journal�
����������	�� ��	�

�Out��� Tools and utilities� DBMS� ���������� June �����

�PLA��� Programming Languages and Systems Group � Queensland University of Tech�
nology� GPO Box ���� Brisbane� QLD ����� Australia� Gardens Point Modula�
�� �����

�PW��� D�J� Pavey and L�A� Winsborrow� Demonstrating equivalence of source code
and PROM contents� The Computer Language� �������������� �����

�Ram		� L� Ramshaw� Eliminating go to�s while preserving program structure� Journal
of the ACM� ������	������ October ��		�

�Ray	�� E�S� Raymond� Plum�hall benchmarks� URL� ftp��plaza�aarnet�edu�au�usenet�
comp�sources�unix�volume��plum�benchmarks�gz� ��	��

�Reu		� J� Reuter� URL� ftp��cs�washington�edu� pub�decomp�tar�z� Public domain
software� ��		�

�Reu��� J� Reuter� Private communication� Email� �����

�Ryd��� B�G� Ryder� Constructing the call graph of a program� IEEE Transactions on
Software Engineering� ���������� May �����

�Sas��� W�A� Sassaman� A computer program to translate machine language into
fortran� In Proceedings SJCC� pages ������ �����

��	 BIBLIOGRAPHY

�SCK���� R�L� Sites� A� Cherno�� M�B� Kirk� M�P� Marks� and S�G� Robinson� Binary
translation� Communications of the ACM� ��������	�� February �����

�Sha	�� M� Sharir� Structural analysis� A new approach to �ow analysis in optimizing
compilers� Computer Languages� ���������� ��	��

�Sof		� RH Factor Software� Bubble chamber installation� Public domain software�
beta release� Anonymous ftp oak�oakland�edu�SimTel�msdos�disasm�bubble�zip�
��		�

�SW��� V� Schneider and G� Winiger� Translation grammars for compilation and
decompilation� BIT� ����	�	�� �����

�SW��� A� Srivastava and D�W� Wall� A practical system for intermodule code opti�
mization at link�time� Journal of Programming Languages� ��������	� March
�����

�Tar�� R�E� Tarjan� Depth�
rst search and linear graph algorithms� SIAM Journal of
Computing� ������������ June ����

�Tar��� R�E� Tarjan� Testing �ow graph reducibility� Journal of Computer and System
Sciences� pages �������� September �����

�Unc��� Your guide to clipper add�ons� Data Based Advisor� ���	�������� August �����

�Val��� Slicing thru source code� Data Based Advisor� ������	� March �����

�WG	�� M�H� Williams and G�Chen� Restructuring pascal programs containing goto
statements� The Computer Journal� 	����������� ��	��

�Wil��� M�H� Williams� Generating structured �ow diagrams� the nature of unstruc�
turedness� The Computer Journal� ����������� �����

�Wir	�� N� Wirth� Programming in Modula��� Springer�Verlag� Berlin Heidelberg� �
edition� ��	��

�WO�	� M�H� Williams and H�L� Ossher� Conversion of unstructured �ow diagrams to
structured form� The Computer Journal� ������������ ���	�

�Wor�	� D�A� Workman� Language design using decompilation� Technical report�
University of Central Florida� December ���	�

�Wor��� Austin Code Works� exec� � release� ����� Email� info'acw�com�

�Yoo	�� C�W� Yoo� An approach to the transportation of computer software� Information
Processing Letters� ���������� September ��	��

�Zan	�� J�R� Van Zandt� Interactive 	�	� disassembler� version ��� Public domain
software� Anonymous ftp oak�oakland�edu�SimTel�msdos�disasm�dis	���zip�
��	��

