Regression Analysis
Regression analysis is a conceptually simple method for investigating functional relationships among variables. We may wish to examine whether cigarette consumption is related to various socioeconomic and demographic variables such as age, education, income, and price of cigarettes. We denote the response variable by Y and the set of predictor variables by X 1 , X2, . . ., Xp, where p denotes the number of predictor variables. 

     The true relationship between Y and X1 , X2, . . . , Xp , can be approximated by the regression model :
y = f ( X l, X2. . . , Xp) + € 1

where E is assumed to be a random error representing the discrepancy in the approximation. It accounts for the failure of the model to fit the data exactly. The function f ( X l, X2. . . , Xp) describes the relationship between Y and XI,X 2 ,. . .. Xp,. An example is the linear regression model:
Y = (o + (1X1 + (2X2 + . . . + (pXp, + (
where (o, (1 . . . , , (p are called the regression parameters or coefficients, are unknown constants to be determined (estimated) from the data.

1.4 STEPS IN REGRESSION ANALYSIS

Regression analysis includes the following steps:

0 Statement of the problem

0 Selection of potentially relevant variables

0 Data collection

0 Model specification

0 Choice of fitting method

0 Model fitting

0 Model validation and criticism

0 Using the chosen model(s) for the solution of the posed problem.
1.4.1 Statement of the Problem

Regression analysis usually starts with a formulation of the problem. This includes the determination of the question(s) to be addressed by the analysis. Suppose we wish to determine whether or not an employer is discriminating against a given group of employees, say women. Data on salary, qualifications, and sex are available from the company’s record to address the issue of discrimination. There are several definitions of employment discrimination in the literature. For example, discrimination occurs when on the average (a) women are paid less than equally qualified men, or (b) women are more qualified than equally paid men.
1.4.2 Selection of Potentially Relevant Variables

The response variable is denoted by Y An example of a response variable is the price of a single family house in a given geographical area. A possible relevant set of predictor variables in this case is: area of the lot, area of the house, age of the house, number of bedrooms, number of bathrooms, type of neighborhood, style of the house, amount of real estate taxes, etc.
1.4.3 Data Collection
Each of the variables can be classified as either quantitative or qualitative. Examples of quantitative variables are the house price, number of bedrooms, age, and taxes. Examples of qualitative variables are neighborhood type (e.g., good or bad neighborhood) and house style (e.g., ranch, colonial, etc.). In

this book we deal mainly with the cases where the response variable is quantitative. A technique used in cases where the response variable is binary6 is called logistic regression.
1.4.4 Model Specification

The form of the model that is thought to relate the response variable to the set of predictor variables can be specified initially by the experts in the area of study based on their knowledge or their  objective and or subjective judgments.
This function can be classified into two types: linear and nonlinear. An example of a linear function is
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while a nonlinear function is
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Note that the term linear (nonlinear) here does not describe the relationship between Y and X I , Xp, . . . , X,. It is related to the fact that the regression parameters enter the equation linearly (nonlinearly). Each of the following models are linear
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A regression equation containing only one predictor variable is called a simple regression equation. An equation containing more than one predictor variable is called a multiple regression equation.An example of simple regression would be an analysis in which the time to repair a machine is studied in relation to the number of components to be repaired.
The distinction between simple and multiple regressions is determined by the number of predictor variables (simple means one predictor variable and multiple means two or more predictor variables), whereas the distinction between univariate and multivariate regressions is determined by the number of response variables (univariate means one response variable and multivariate means two or more response variables).

1.4.5 Method of Fitting

After the model has been defined and the data have been collected, the next task is to estimate the parameters of the model based on the collected data. This is also referred to as parameter estimation or model$tting. The most commonly used method of estimation is called the least squares method. Under certain assumptions (to be discussed in detail in this book), least squares method produce estimators with desirable properties.
1.4.6 Model Fitting

The next step in the analysis is to estimate the regression parameters or to fit the model to the collected data using the chosen estimation method (e.g., least squares). The estimates of the egression parameters 
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are denoted by
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The estimated regression equation then becomes 
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A hut on top of a parameter denotes an estimate of the parameter. The value Y (pronounced as Y-hat) is called the fitted value.

2.2 COVARIANCE AND CORRELATION COEFFICIENT
We start with the simple case of studying the relationship between a response variable Y and a predictor variable X.
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On the scatter plot of Y versus X , let us draw a vertical line at 2 and a horizontal line at j j , as shown in Figure 2.1, where
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For each point i in the graph, compute the following quantities : 

0  yi – yi~ , the deviation of each observation yi from the mean of the response variable,

0 xi - xi~, the deviation of each observation xi from the mean of the predictor variable, and

0 the product of the above two quantities, (yi - yi~) (xi - xi~) .

It is clear from the graph that the quantity (yi - y) is positive for every point in the first and second quadrants, and is negative for every point in the third and fourth Figure 2.1 A graphical illustration of the correlation coefficient.
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Figure 2.1 A graphical illustration of the correlation coefficient.
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If the linear relationship between Y and X is positive (as X increases Y also increases), then there are more points in the first and third quadrants than in the second and fourth quadrants. In this case, the sum of the last column in Table 2.2 is likely to be positive because there are more positive than negative quantities. Conversely, if the relationship between Y and X is negative (as X increases Y decreases), then there are more points in the second and fourth quadrants than in the first and third quadrants. Hence the sum of the last column in Table 2.2 is likely to be negative. Therefore, the sign of the quantity:
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If Cov(Y, X ) > 0, then there is a positive relationship between Y and X, but if Cov(Y,X) < 0, then the relationship is negative. Unfortunately, Cov(Y,X) does not tell us much about the strength of such a relationship because it is affected by changes in the units of measurement. To standardize the Y data, we first subtract the mean from each observation then divide by the standard deviation, that is, we compute
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We standardize X in a similar way by subtracting the mean x~ from each observation xi then divide by

the standard deviation sx. The covariance between the standardized X and Y data is known as the correlation coeflcient between Y and X and is given by:
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Cor(Y, X) > 0 implies that Y and X are positively related. Conversely, Cor(Y, X) < 0, implies that Y and X are negatively related. Note, however, that Cor(Y, X) = 0 does not necessarily mean that Y and X are not related. It only implies that they are not linearly related because the correlation coefficient measures only linear relationships.

2.3 EXAMPLE: COMPUTER REPAIR DATA
To study the relationship between the length of a service call and the number of electronic components in the computer that must be repaired or replaced, a sample of records on service calls was taken.
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Although Cor(Y, X) is a useful quantity for measuring the direction and the strength of linear relationships, it cannot be used for prediction purposes, that is, we cannot use Cor(Y, X) to predict the value of one variable given the value of the other. Furthermore, Cor(Y, X) measures only pairwise relationships. Regression analysis, however, can be used to relate one or more response variable to one or more predictor variables. It can also be used in prediction. Regression analysis is an attractive extension to correlation analysis because it postulates a model that can be used not only to measure the direction and the strength of a relationship between the response and predictor variables, but also to umerically describe that relationship.
2.4 THE SIMPLE LINEAR REGRESSION MODEL

The relationship between a response variable Y and a predictor variable X is postulated as a lineaI-2 model :
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Where (0 and (1 are constants called the model regression coeficients or purumeters, and E is a random disturbance or error. In other words, Y is approximately a linear function of X , and E measures the discrepancy in that approximation. 
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2.5 PARAMETER ESTIMATION

Based on the available data, we wish to estimate the parameters  (0 and (1. This is equivalent to finding the straight line that gives the best fit (representation) of the points in the scatter plot of the response versus the predictor variable (see Figure 2.4). We estimate the parameters using the popular least squares method, which gives the line that minimizes the sum of squares of the vertical distances3 from each point to the line.
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Using the Computer Repair data and the quantities in Table 2.6, we have
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Then the equation of the least squares regression line is

Minutes = 4.162 + 15.509 Units.
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Figure 2.5 Plot of Minutes versus Units with the fitted least squares regression line.
Table 2.7 The Fitted Values, yi, and the Ordinary Least Squares Residuals, ei, for the Computer Repair Data:
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MULTIPLE LINEAR REGRESSION
The data consist of n observations on a dependent or response variable Y and p predictor or explanatory variables, X I , X2, . . . , Xp. The observations are usually represented as in Table 3.1. The relationship between Y and X I , Xp, . . . , X , is formulated as a linear model:
Y = (0 + (1X1 + (2X2 + … + (pXp + (
For each observation:

Yi = (0 + (1Xi1 + (2Xi2 + … + (pXip + (
Where,  (0, (1, (2, … + (p are constants referred to as the model partial regression coefficients (or simply as the regression coeficients) and ( is a random disturbance or error. Multiple linear regression is an extension (generalization) of simple linear regression. One can similarly think of simple regression as a special case of multiple regression because all simple regression results can be obtained using the multiple regression results when the number of predictor variables p = 1. 
3.3 EXAMPLE: SUPERVISOR PERFORMANCE DATA
An exploratory study was undertaken to try to explain the relationship between specific supervisor characteristics and overall satisfaction with supervisors as perceived by the employees. The data for the analysis were generated from the individual employee response to the items on the survey questionnaire. The response on any item ranged from 1 through 5 , indicating very satisfactory to very unsatisfactory, respectively. A dichotomous index was created to each item by collapsing the response scale to two categories: {1,2}, to be interpreted as a favorable response, and {3,4,5}, representing an unfavorable response. The data were collected in 30 departments selected at random from the organization. Each department had approximately 35 employees and one supervisor. The data to be used in the analysis, given in Table 3.3, were obtained by aggregating responses for departments to get the proportion of favorable responses for each item for each department.
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A linear model of the form
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3.4 The Least Square Line
The least-squares line uses a straight line 
                                               Y = (0 + (1X1
to approximate the given set of data (x1, y1), (x2, y2), ,, (xn, yn) where n ( 2. The best fitting curve f(x) has the least square error, i.e., 

s = ((yi – f(xi))2 = ((yi – ((0 + (1xi))2 = min
To obtain the least square error, the unknown coefficients  (0 and  (1 must yield zero first derivatives.
((s/((0 = 0 = 2 ((yi – ((0 + (1xi)) = 0                            1 ( i ( n
(
((s/((0 = 0 = 2 ( xi (yi – ((0 + (1xi)) = 0                        1 ( i ( n
Expanding the above equations, we have:
((yi = (0 (1 + (1(xi                            1 ( i ( n
(
((xiyi = (0(xi + (1(xi2                       1 ( i ( n
The unknown coefficients  (0 and  (1 can therefore be obtained:
((0 =  ((yi – ((xi (xiyi )) / (n (xi2  - ((xi)2(
(
((1 =  (n(xiyi – ((xi (yi () / (n (xi2  - ((xi)2(
3.4 Multiple Regression

Multiple regression estimates the outcomes (dependent variables) which may be affected by more than one control parameter (independent variables) or there may be more than one control parameter being changed at the same time. An example is the two independent variables x1 and x2 and one dependent variable y in the linear relationship case:
                                               Y = (0 + (1X1+ (2X2
s = ((yi – f(x1i , x2i))2 = ((yi – ((0 + (1x1i+ (2x2i))2 = min

To obtain the least square error, the unknown coefficients  (0 and  (1 must yield zero first derivatives.

((s/((0 = 2 ((yi – ((0 + (1x1i+ (2x2i)) = 0                            1 ( i ( n
((s/((1 = 2 ( x1i (yi – ((0 + (1x1i+ (2x2i)) = 0                        1 ( i ( n
((s/((2 = 2 ( x2i (yi – ((0 + (1x1i+ (2x2i)) = 0                        1 ( i ( n
Expanding the above equations, we have:

((yi = (0 (1 + (1(x1i  + (2(x2i                                   1 ( i ( n

((x1iyi = (0(x1i + (1(x1i2 + (2( x1i x2i                       1 ( i ( n
((x2iyi = (0(x2i + (1( x1i x2i + (2(x2i2                       1 ( i ( n
3.5 Solving the least squares problem
A residual is defined as the difference between the value of the dependent variable and the predicted value from the estimated model,
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The least squares method finds its optimum when the sum, S, of squared residuals:
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is a minimum.
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is a minimum. The minimum of the sum of squares is found by setting the gradient to zero. Since the model contains m parameters there are m gradient equations.
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and since [image: image34.png]


the gradient equations become
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A regression model is a linear one when the model comprises a linear combination of the parameters, i.e.
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where the coefficients, φj, are functions of xi.

Letting
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we can then see that in that case the least square estimate (or estimator, in the context of a random sample), ( is given by
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For a derivation of this estimate see Linear least squares.

