[image: image1.emf]
What Is a Multicore?

A multicore is an architecture design that places multiple processors on a single die (computer chip). Each processor is called a core. As chip capacity increased, placing multiple processors on a single chip became practical. These designs are known as Chip Multiprocessors (CMPs) because they allow for single chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred method of improving overall system performance.
Four Effective Multicore Designs
In this chapter we take a closer look at four multicore designs from some of the computer industry ’ s leading chip manufacturers:

1. The AMD Multicore Opteron

2. The Sun UltraSparc T1

3. The IBM Cell Broadband Engine (CBE)

4. The Intel Core 2 Duo

Each of these vendors approaches the Chip Multiprocessor (CMP) differently. Their approaches to multicore design are implemented effectively with each design having its advantages, strengths, and weaknesses in comparison to the other designs. Table 2 - 2 shows a comparison of the Opteron, UltraSparc T1, CBE, and Core 2 Duo processors.
[image: image2.emf]
The AMD Multicore Opteron

The dual core Opteron is the entry level into AMD ’ s multicore processor line. The dual core Opteron is the most basic configuration, and it captures AMD ’ s fundamental approach to multicore architectures. The Opteron is source and binary code compatible with Intel ’ s family of processors, that is, applications written for the Intel processors can compile and execute on Opterons. Figure 2 - 1 shows a simple block diagram of a dual core Opteron.

[image: image3.emf]
The dual core Opteron consists of two AMD 64 processors, two sets of level 1 (L1) cache, two sets of level 2 (L2) cache, a System Request Interface (SRI), a crossbar switch, a memory controller, and HyperTransport technology. One of the key architectural differences between the Opteron and other designs is AMD ’ s Direct Connect Architecture (DCA) with HyperTransport technology. The Direct Connect Architecture determines how the CPUs communicate with memory and other I/O devices.

The Opteron processor moves away from this bus - based architecture. It uses a Direct Connect Architecture (DCA) in conjunction with HyperTransport (HT) technology to avoid some of the performance bottlenecks of the basic Front Side Bus (FSB), Back Side Bus (BSB), and Peripheral Component Interconnect (PCI) configurations.
The HyperTransport Consortium defines HyperTransport as a high - speed, low - latency, point - to – point link designed to increase the communication speed between integrated circuits in computers, servers, embedded systems, and networking and telecommunications equipment. According to the HyperTransport Consortium, HT is designed to:

· Provide significantly more bandwidth

· Use low - latency responses and low pin counts

· Maintain compatibility with legacy buses while being extensible to new network architecture buses

· Appear transparent to operating systems and have little impact on peripheral drivers

The Opteron uses HT as a chip - to - chip interconnection between CPU and the I/O. The components connected with HT are connected in a peer - to - peer fashion and are, therefore, able to communicate with each other directly without the need of data buses. HT Links. I/O devices and buses such as PCI - E, AGP, PCI - X, and PCI connect to the system over HT Links. The PCIs are I/O buses, and the AGP is a direct graphics connection. Besides improving the onnections between the processors and I/O, HT is also used to facilitate a direct connection between the processors on the Opteron. Multicore communication on the Opteron is enhanced by using HT.
The System Request Interface (SRI) contains the system address map and maps memory ranges to nodes. If the memory access is to local memory, then a map lookup in the SRI sends it to the memory controller for the appropriate processor. If the memory access is not local (off chip), then a routing table lookup sends it to a HT port. For more see [Hughes, Conway, 2007 IEEE]. Figure 2 - 2 shows a logic layout of the crossbar.

[image: image4.emf]
The crossbar has five ports: memory controller, SRI, and three HTs. The crossbar switch processing is logically separated into command header packet processing and data header packet processing. Logically, part of the crossbar is dedicated to command packet routing, and the other part is dedicated to data packet routing.
The Opteron Is NUMA

Opteron has a Non - Uniform Memory Access (NUMA) architecture. In this architecture, each processor has access to its own fast local memory through the processor ’ s on - chip memory controller. NUMA architecture has a distributed but shared memory architecture. This is in contrast to the Uniform Memory Access (UMA) architecture. Figure 2 - 3 shows a simplified overview of a UMA architecture.

[image: image5.emf]
The processor configuration in Figure 2 - 3 is often called a symmetric (shared - memory) multiprocessor (SMP). In contrast, Figure 2 - 4 shows a simplified overview of a NUMA architecture. In general, the notion of a shared address space is more straightforward in the UMA architecture than the NUMA, because there is only one main system memory to consider.
[image: image6.emf]
The NUMA is a distributed shared memory (DSM) architecture. In the NUMA architecture the address space is shared from a logical viewpoint, and in the UMA configuration the processors physically share the same block of memory. The SMP architecture is satisfactory for smaller configurations, but once the number of processors starts to increase, the single memory controller can become a bottleneck and, therefore, degrade overall system performance. The NUMA

architecture, on the other hand, scales nicely because each processor has its own memory controller. If you look at the configuration in Figure 2 - 4 as a simplified Opteron configuration, then the network interconnection is accomplished by the Opteron HyperTransport technology. Using the HyperTransport technology, the CPUs are directly connected to each other and the I/O is directly connected to the CPU. This ultimately gives you a performance gain over the SMP configuration.

The Sun UltraSparc T1 Multiprocessor

The UltraSparc T1 is an eight - core CMP and has support for chip - level multithreading (CMT). Each core is capable of running four threads. This is also sometimes referred to as hyperthreaded. The CMT of the UltraSparc T1 means that the T1 can handle up to 32 hardware threads. What does this mean for the software developer? Eight cores with four threads presents itself to an application as 32 logical processors.
The UltraSparc T1 offers the most on – chip threads of the architectures that we discuss in the book. Each of the eight cores equates to a 64 – bit execution pipeline capable of running four threads. Figure 2 - 5 contains a functional overview of an UltraSparc T1 multiprocessor.
[image: image7.emf]
The T1 consists of eight Sparc V9 cores. The V9 cores are 64 - bit technology. Each core has L1 cache. Notice in Figure 2 - 5 that there is a 16K L1 instruction cache and an 8K L1 data cache. The eight cores all share a single floating - point unit (FPU). Figure 2 - 5 shows the access path of the L2 cache and the eight cores. The four threads share L2 cache. Each core has a six - stage pipeline:

1. Fetch

2. Thread selection

3. Decode

4. Execute

5. Memory access

6. Write back
Notice in Figure 2 - 5 that the cores and the L2 cache are connected through the cross - switch or crossbar. The crossbar has 132 GB/s bandwidth for on chip communications. The crossbar has been optimized for L2 cache - to - core communication and for core - to - L2 cache communication. The FPU, the four banks of L2 cache, the I/O bridges, and the cores all communicate through the crossbar. Basically the crossbar acts as the mediator, allowing the components of the T1 to communicate to each other.
We introduce the architecture of the UltraSparc T1 to contrast it with that of the AMD Opteron, IBM Cell Broadband architecture, and the Intel Core 2 Duo. While each of these architectures is multicore, the different implementations are dramatic. From the highest level, an application designed to take advantage of multicore will see them all as a collection of two or more processors. However, from an optimization point of view, there is much more to take into consideration. Two of the most commonly used compilers for the UltraSparc T1 are the Sun C/C++ compiler (part of Sun Studio) and the GNU gcc, the standard open source C/C++ compiler. While Sun ’ s compilers obviously have the best support for their processors, GNU gcc has a great deal of support for T1, with options that take advantage of threads, loop unrolling, vector operations, branch prediction, and Sparc - specific platform options.
The IBM Cell Broadband Engine

The CBE is a heterogeneous multicore chip. It is a heterogeneous architecture because it consists of two different types of processors: PowerPC Processing Element (PPE) and Synergistic Processor Element (SPE). The CBE has one PPE and eight SPEs, one high - speed memory controller, one high – bandwidth element interconnect bus, high - speed memory, and I/O interfaces all integrated on - chip. This makes it a kind of hybird nine - core processor. Figure 2 - 6 shows an overview of the CBE processor.

[image: image8.emf]
Intel Core 2 Duo Processor

Intel ’ s Core 2 Duo is only one of Intel ’ s series of multicore processors. Some have dual cores and others have quad cores. Some multicore processors are enhanced with hyperthreading, giving each core two logical processors. The first of Intel ’ s multicore processors was the Intel Pentium Extreme Edition introduced in 2005. It had dual cores and supported hyperthreading, giving the system eight logical cores. The Core Duo multicore processor was introduced in 2006 and offered not only multiple cores but also multiple cores with a lower power consumption. Core 2 Duo, also introduced in 2006, has dual cores; it has no hyperthreading but supports a 64 bit architecture.

Figure 2 - 8 shows a block diagram of Intel ’ s Core 2 Duo ’ s motherboard. The Core 2 Duo processor has two 64 - bit cores and 2 64K level 1 caches, one for each core. Level 2 cache is shared between cores. Level 2 cache can be up to 4MB. Either core can utilize up to 100 percent of the available L2 cache. This means that when the other core is underutilized and is, therefore, not requiring much L2 cache, the more active core can increase its usage of L2.
[image: image9.emf]
Besides the CPUs, the next most important component of the motherboard is the chipset. The chipset , shown in Figure 2 - 8 , is a group of integrated circuits designed to work together that connects the CPUs to the rest of the components on the motherboard. It is an integrated part of the motherboard and, therefore, cannot be removed or upgraded. It is manufactured to work with a specific class or series of CPUs in order to optimize its performance and the performance of the system in general. The chipset moves data back and forth from CPU to the various components of the motherboard, including memory, graphics card, and I/O devices, as diagrammed in Figure 2 - 8 . All communication to the CPU is routed through the chipset.

The chipset comprises two chips: Northbridge and Southbridge. These names were adopted because of the locations of the chips on the motherboard and the purposes they serve. The Northbridge is located in the northern region, north of many the components on the motherboard, and the Southbridge is located in the southern region, south of some components on the motherboard. Both serve as bridges or connections between devices; they bridge components to make sure that data goes where it is supposed to go.

· The Northbridge , also called the memory controller hub , communicates directly with the CPU via the Front Side Bus. It connects the CPUs with high - speed devices such as main memory. It also connects the CPUs with Peripheral Component Interconnect Express (PCI - E) slots and the Southbridge via an internal bus. Data is routed through the Northbridge first before it reaches the Southbridge.

· The Southbridge , also called the I/O controller , is a slower than the Northbridge. Because it is not directly connected to the CPUs, it is responsible for the slower capabilities of the motherboard like the I/O devices such as audio, disk interfaces, and so on. The Southbridge is connected to BIOS support via the Serial Peripheral Interface (SPI), six PCI - E slots, and other I/O devices not shown on the diagram. SPI enables the exchange of data (1 bit at a time) between the Southbridge and the BIOS support using a master - slave configuration. It also operates with a full duplex, meaning that data can be transferred in both directions.

PCI - E or PCI Express is a computer expansion card interface. The slot serves as a serial connection for sound, video, and network cards on the motherboard. Serial connections can be slow, sending data 1 bit at a time. The PCI - E is a high - speed serial connection, which works more like a network than a bus. It uses a switch that controls many point - to - point full - duplex (simultaneous communication in both directions) serial connections called lanes. There can be 4, 8, of 16 lanes per slot. Each lane has two pairs of wires from the switch to the device — one pair sends data, and the other pair receives data. This determines the transfer rate of the data. These lanes fan out from the switch directly to the devices where the data is to go. The PCI - E is a replacement of the PCI and provides more bandwidth. Devices do not

share bandwidth. The Accelerated Graphics Port (AGP) is replaced with a PCI - E x16 (16 lanes) slot that accommodates more data transferred per second (8 GB/s).

The Core 2 Duo has increased performance of its processor by supporting Streaming SIMD Extensions (SSE) and special registers to perform vectorizable instructions. SSE3 provides a set of 13 instructions that are used to perform SIMD operations on packed integers and floating - point data elements. This speeds up applications that utilize SIMD operations such as highly intensive graphics, encryption, and mathematical applications. The processor has 16 registers used to execute SIMD instructions: 8 MMX and 8 XMM registers. The MMX registers support SIMD operations on 64 - bit packed byte, word, and doubleword integers. The XMM data registers and the MXCSR registers support execution of SIMD operations on 128 - bit packed single - precision and double - precision floating - point values and 128 – bit packed byte, word, doubleword, and quadword integers. Table 2 - 3 gives a brief description of the three registers, XMM, MMX, MXCSR, involved in executing SIMD operations.

[image: image10.emf]
There are many compiler switches that can be used to activate various capabilities of the multicore processors. For the Intel C\C++ compiler, there are compiler switches that activate vectorization options to utilize the SIMD instructions, auto parallelization options, loop unrolling, and code generation optimized for a particular processor.
Managing IPC Mechanisms

The POSIX specification supports six basic mechanisms used to accomplish communication between processes:

· Files with lock and unlock facilities

· Pipes (unnamed, named also called FIFOs — First - In, First - Out)

· Shared memory

· POSIX message queues

· Sockets

· Semaphores

POSIX Interprocess Communication Description

· Pipes A form of communication channel between related or unrelated processes. Normally accessed with file read and write facilities.

· Shared memory A block of memory accessed by processes that resides outside of their address space.

· Message queues A linked list of messages that can be shared between processes.

· Semaphores A variable used to synchronize access between threads or processes of a resource.

· Sockets A bidirectional communication link between processes that utilizes ports and IP addresses.
Track of which process opens up which queue for what. If a process opens up the queue for read-only access, then later tries to write the queue, it can cause problems. If the number of concurrently executing] tasks involved is small, this can be readily managed. However, once you move beyond a dozen or so concurrently executing processes, then managing the IPC mechanisms become a challenge. This is especially true for the procedural models of decomposition mentioned earlier in the chapter. Even when the two - way or one - way traffic requirements are properly managed, you face issues of the integrity of the information transmitted between two or more processes. The message passing scheme might encounter issues such as interrupted transmissions (partial execution), garbled messages, lost messages, wrong messages, wrong recipients, wrong senders, messages that are too long, messages that are too short, late messages, early messages, and so on.
It is important to note that these particular communication challenges are unique to processes and don ’ t apply to threads. This is because each process has its own address space and the IPC mechanisms are used as a communication bridge between processes. Threads, on the other hand, share the same address space. Simultaneously executing threads share the same data, stack and text segments. Figure 3 - 2 shows a simple overview of the anatomy of a thread in comparison to that of a process.

[image: image11.emf]
Communication between two or more threads (sometimes called lightweight processes) is easier because threads don ’ t have to worry about address space boundaries. This means that each thread in the program can easily pass parameters, get return values from functions, and access global data. As you see in Figure 3 - 2 , threads of the same process access the global variables of its process stored in the data segment. Here we highlight the basic difference between Interprocess Communication (IPC) and Interthread Communication (ITC) mechanisms: IPC mechanisms reside outside the address space of processes, whereas ITC mechanisms reside within the address space of a process. That ’ s not to ay that threads don ’ t have their own challenges; it ’ s just that they are immune from the problems of having to cross address spaces.
Problem #1: Data Race

If two or more tasks attempt to change a shared piece of data at the same time and the final value of the data depends simply on which tasks get there first, then a race condition has occurred. When two or more tasks are attempting to update the same data resource at the same time, the race condition is called a data race . Information that is subject to race conditions is not reliable. This goes for input values as well as output values. The status of the paint bucket in the house - painting problem using Decomposition #2 is a candidate for data race.

Even computers with multiprocessors will be reduced to multiprogramming if the number of threads or processes that the operating system is managing is greater than the number of available processors. This means that the operating system will suspend and resume threads or processes as necessary. And, what to suspend and when to suspend it is typically up to the operating system. This introduces a degree of uncertainty when a collection of processes or threads are executing.
Problem #2: Deadlock
In your attempts to coordinate concurrently executing tasks, deadlock and indefinite postponement are two of the ugliest obstacles that you must overcome. To make matters worse, it ’ s not always clear when it has occurred. The tasks involved may be waiting for legitimate events to happen. It could also be the case that Task A is simply taking a little longer than expected. So identifying legitimate deadlocks also poses another challenge on the road to multicore programming. The steps involved in identifying deadlocks (deadlock detection), preventing deadlocks, and avoiding deadlocks are critical to applications that use multiprocessing or multithreading.

Problem #3: Indefinite Postponement

Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event or condition must take place in a timely fashion. Second, it requires carefully placed communications between tasks. If one or more tasks are waiting for a piece of communication before they execute and that communication either never comes, comes too late, or is incomplete, then the tasks may never execute. Likewise, if the event or condition that you assumed would eventually happen actually never occurs, then the tasks that you have suspended will wait for ever. If one or more tasks are suspended, waiting for some condition or event that never occurs, this is known as indefinite postponement.

Data race, deadlock, and indefinite postponement are examples of synchronization problems. These types of problems take the form of competition for the same resource by two or more tasks at the same time. Resources can be software or hardware. Software resources include files, records within files, fields within records, shared memory, program variables, pipes, sockets, and functions. Hardware resources include interrupts, physical ports, and peripherals such as printers, modems, displays, storage, and multimedia devices. Some of these resources are easily sharable such as disks or files. Other resources require that access be carefully managed as in the case of interrupts. When two or more tasks attempt to change the state of the same resource at the same time, there is the possibility of data loss, incorrect program results, system failure, and in some cases, device damage.
The synchronization problems of data race, deadlock, and indefinite postponement are sometimes magnified by the challenges involved in setting up the right execution relationships between threads or processes.
The Basic Synchronization Relationships

There are four basic synchronization relationships between any two threads in a single process or anytwo processes in a single application.

1. In a start - to - start (SS) relationship, Task A cannot start until Task B starts. Task B may start at the same time that Task A starts or after A starts, but never before Task A starts.

2. In a finish - to - start (FS) relationship Task B cannot start until Task A finishes or completes a certain operation. For example, if Task B is reading from the POSIX message queue that Task A is writing to, Task A needs to write at least one element in the queue before Task B can process it. Again if Task B needs to perform a binary search on a list that Task A has to sort, Task B should be synchronized with Task A so that Task B does not start the search until Task A has finished the sort. Finish - to - start relationships normally suggest information dependencies.

3. The start - to - finish (SF) synchronization relationship says that Task A cannot start until Task B finishes. This kind of relationship is common in situations where a parent process requires IPC from a child process to complete, or when a process or thread recursively calls itself after it has supplied the parent with the information or event needed.

4. Finally, you have the finish - to - finish (FF) synchronization relationship, which says that Task A cannot finish until Task B finishes. Whereas Task A may finish after Task B finishes, Task A is not allowed to finish before Task B.
[image: image12.emf]
Timing Considerations
Sometimes the synchronization relationships need to be augmented with timing - specific information. This means that in designing the synchronization relationship, time and events need to be considered. For example, if you have Task A and Task B executing concurrently, where Task A is performing a communication task and Task B is a monitor watching for a timeout, Task A and Task B might be synchronized with a start - to - start relationship. There is no need for Task B to begin checking for a timeout condition until Task A has started a communication task. However, once Task A starts its communication task and continues for so many milliseconds without any activity, Task B might issue a timeout message. In this case, Task B is using a lag time before it issues a timeout message. A lag time is used to define a synchronization relationship further. Lag times require that an element of time be added to the specification of a synchronization relationship. For instance, you might say that Task A and Task B have a start - to – start synchronization with the additional requirement that Task B has to wait 10 nanoseconds after Task A starts before starting.

Many Processes or Threads Are Enough?
There is a point where the overhead in managing multiple processors outweighs the speed improvement and other advantages gained from parallelization. The old adage “ you can never have enough processors ” is simply not true. Communication between threads or synchronization between processors comes at a cost.

C++ Developers Have to Learn New Libraries
The POSIX threads library is a set of system calls that can be used in conjunction with C++ to support parallelism. The Portable Operating System Interface (POSIX) threads are part of the new Single Unix Specification. The POSIX threads are included in the IEEE Std. 1003.1 - 2001. The Single Unix Specification is sponsored by the Open Group and developed by the Austin Common Standards Revision Group. According to the Open Group, the Single Unix Specification:

· Is designed to give software developers a single set of APIs to be supported be every Unix System

· Shifts the focus from incompatible Unix system product implementations to compliance to a single set of APIs

· Is the codification and dejure standardization of the common core of Unix system practice

· Has the basic objective of portability for both programmers and application source code

The Single Unix Specification Version 3 includes the IEEE Std. 1003.1 - 2001 and the Open Group Base Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single Unix Specification and vice versa. There is now a single international standard for a portable operating system interface. C++ developers benefit because this standard contains APIs for creating threads and processes. Excluding instruction - level parallelism, dividing a program up into either threads or processes is the only way to achieve parallelism with C++. The new standard provides the tools to do this. The developer can use:

· POSIX threads (also referred to as pthreads)

· POSIX spawn function

· The exec() family of functions

GNU C++ compiler, Intel C/C++ compiler, and the Sun C/C++ compiler, each has its own set of switches and directives that supports multithreading and multiprocessing. In some cases (for example, the Cell processor), multiple types of compilers are needed to generate a single executable program. The danger is that taking advantage of a particular architecture can make the software nonportable. While portability is not an issue for all applications, it is for many. How can you take the most advantage of some multicore architecture without using features that will hurt portability? That is another key question you have to answer as you develop multicore applications.

The Developer ’ s Interaction with the Operating System

Regardless of whether you use class libraries, high - level function libraries, or application frameworks for your multicore development, the operating system still plays the role of gatekeeper to the processors, memory, filesystems, and so on connected to the computer. This means that the multithreading or multiprocessing functionality that is contained in class libraries, high - level function libraries, or application frameworks still needs to pass through operating system APIs or SPIs. Figure 4 - 1 shows the developer ’ s view of the software layers and the operating system.

[image: image13.emf]
Some of the challenges that relate specifically to the operating system services from Chapter 3 are:

· Software decomposition into instructions or sets of tasks that need to execute simultaneously Communication between two or more tasks that are executing in parallel

· Concurrently accessing or updating data by two or more instructions or tasks

· Identifying the relationships between concurrently executing pieces of tasks

· Controlling resource contention when there is a many - to - one ratio between tasks and resource

· Determining an optimum or acceptable number of units that need to execute in parallel

· Documenting and communicating a software design that contains multiprocessing and multithreading

· Creating a test environment that simulates the parallel processing requirements and conditions

· Recreating a software exception or error in order to remove a software defect

· Involving the operating system and compiler interface components of multithreading and multiprocessing
The Developer ’ s Interaction with the Operating System
Regardless of whether you use class libraries, high - level function libraries, or application frameworks for your multicore development, the operating system still plays the role of gatekeeper to the processors, memory, filesystems, and so on connected to the computer. Figure 4 - 1 shows the developer ’ s view of the software layers and the operating system.

[image: image14.emf]
 Page 97
Level 4 is the highest level. This level provides the most insulation from the details of parallel programming for the developer. The Standard Template Adaptive Parallel Library (STAPL) is an example of this kind of application framework. STAPL is a framework for developing parallel programs in C++.
Level 3 in Figure 4 - 1 is represented by template or class libraries like Intel Threading Building Blocks (TBB) library. The Intel Threading Building Block library is a set of high - level generic components that also encapsulate much of the detail of multiprocessing and multithreading. Developers using the TBB invoke high - level algorithm templates and synchronization objects that do the low - level work.
Level 2 in Figure 4 - 1 includes thread and process APIs provided by the operating system environment. Working with multithreading and multiprocessing at level 2 requires detailed knowledge of process and thread management, Interprocess Communication, and a command of synchronization techniques. It requires intimate knowledge of operating system APIs related to process and thread management. It requires specific knowledge of the implementation of parallel algorithms. It requires knowledge of the specific compiler and linker directives that relate to multiprocessing and multithreading. In some cases, the control and flexibility of programming at level 2 is an acceptable tradeoff for the additional skill and effort required.

The programming at level 1 in Figure 4 - 1 requires the most knowledge of operating system internals, hardware interfaces, and kernel - level interfaces. Level 1 programming directly accesses the hardware with few or no software barriers. Programming at level 1 is in the domain of system programming.
The nature of multithreaded and multiprocessing application requires that the developer understand the fundamental relationship between the software, the operating system, and the processors and memory. Once the software design process determines that the application is best divided into two or more concurrently executing tasks, the concurrently executing tasks have to be mapped to either processes, threads, or both. The C++ developer using any of today ’ s modern operating systems has three basic choices for implementing the tasks. The tasks can be implemented as:

· Processes

· Threads

· A combination of processes and threads
To map a user task to a system process, you use an operating system API. In this case you use the posix_spawn() function. You pass the task that you want to associate with an operating system process to posix_spawn() . Any task associated to a process through posix_spawn() can be scheduled by the operating system to run in parallel with other processes. You can use a POSIX message queue, to pass information between concurrently executing processes,
Figure 4 - 2 shows a block diagram of the basic decomposition choices for the example four – task application.
[image: image15.emf]
In Case 1 in Figure 4 - 2 the application is divided into four tasks. These four tasks are implemented by three operating system processes. The fact that the four tasks are implemented by three processes means that it is possible for three of the tasks to be actually executing on three separate processors simultaneously or multiprogrammed on any number of processors. In multiprogramming, the operating system rapidly switches between processes. The operating system can only schedule processes or kernel threads (lightweight processes) to execute on the processor.
Case 1 is using multiprocessing because it takes advantage of the operating system ’ s multiprocessors by assigning its tasks to operating system processes. The system assigns processes to any free cores that it might have. So if the application is divided into processes, it can exploit the fact that the system can run as many processes in parallel as it has processors.

in Case 2 . one process is divided into three user threads that can execute concurrently. In this scenario, the four concurrent tasks requirement has been implemented using three threads. It is important to notice that Case 2 has only two kernel threads. Since the operating system schedules processes or kernel threads for processors, this means that the single process in Case 2 could be scheduled to a single processor or the two kernel threads could be scheduled to separate processors. Thus, if all four cores were free, at most two tasks would be executing simultaneously.

In Case 2 the user threads have to be associated with kernel threads before they are actually executed. So, you can see that in our thread approach we map the software tasks to user threads, and then the user threads are mapped to kernel threads or lightweight processes (lwp). The pthread_create() operating system API is used to associate a software task with a thread. Notice in Figure 4 - 2 that the communication requirements for the tasks do not require special operating system intervention when using the thread approach for decomposition. This is because the threads share the same address space and therefore can share data structures that are kept in the data segment of the process.

Portable Operating System Interface (POSIX) is a standard that defines a standard operating system interface and environment, including a command interpreter (or “ shell ”) and common utility programs to support applications portability at the source code level. The major operating system environments — ZOS, Solaris, AIX, Windows, Mac OS X, Linux, HP - UX, IRIX — all claim basic support for the POSIX standard.
Multitasking allows more than one process to execute at the same time, whereas multithreading allows a single process to perform more than one task at the same time. Keep in mind that software or programs stored on disk are not processes or threads. A process is a program that is in execution, that has a process control block and process table, and that is being scheduled by the operating system. Threads are parts of processes. Software and programs have to be loaded by the OS before any processes are created. Processes or lightweight processes have to be created before threads can be created.

Process Management Example: The Game Scenario (page 105)
I ’ m thinking of a six - character code. My code can contain any character more than once. However, my code can only contain any characters from the numbers 0 – 9 or characters a – z. Your job is to guess what code I have in mind. If you guess what I ’ m thinking in 5 minutes, you win.
you just happen to have access to a dual core CMP. So, the strategy then is to divide the big file containing over four million possibilities into two files containing two million possibilities. So you develop the program called find_code . The find_code program takes as input a file containing codes, and it performs a brute - force (exhaustive/sequential) search looking for the code. The trick is that you need the OS to help you use both of the cores in the search. Ideally, you would have the two cores each searching through one of the files simultaneously. Your theory is that two heads are better than one, and if you divide the list in half, it should take half the time to find the code. So, you want the OS to run two versions of the find_code program simultaneously, with each version searching through half the original file. You use a posix_spawn() call to launch the program, as shown in Listing 4 - 1 .

Listing 4 - 1

//Listing 4-1 Program (guess_it) used to launch find_code.

1 using namespace std;

2 #include < iostream >

3 #include < string >

4 #include < spawn.h >

5 #include < sys/wait.h >

6

7 int main(int argc,char *argv[],char *envp[])

8 {

9

10 pid_t ChildProcess;

11 pid_t ChildProcess2;

12 int RetCode1;

13 int RetCode2;

14 int Value;

15 RetCode1 = posix_spawn(& ChildProcess,”find_code”,NULL, NULL,argv,envp);
16
17 RetCode2 = posix_spawn(& ChildProcess2,”find_code”,NULL, NULL,argv,envp);
18

19 wait(& Value);

20 wait(& Value);

21 return(0);

22 }

The posix_spawn() call on lines #15 and #17 launches the program named find_code .

 15 RetCode1 = posix_spawn(& ChildProcess,”find_code”,NULL, NULL,argv,envp);

 17 RetCode2 = posix_spawn(& ChildProcess2,”find_code”,NULL, NULL,argv,envp);

When the program in Listing 4 - 1 is executed, it causes the operating system to generate three processes. Recall that it is the operating system not programs that assigns processes to execute on cores and CPUs. The processes can execute simultaneously. The processes that are created as a result of calling posix_spawn are referred to as child processes. To generate four searches, you divide the find_code program into two threads of execution. So, the main program named guess_it in Listing 4 -1 , spawns two child_processes that execute the program find_code . The program find_code creates two threads called Task1 and Task2 . Listing 4 - 2 is the new multithreaded version of find_code .
Program Name:

guess_it.cc (Listing 4 - 1)

Description:

posix_spawn() launches the program named find_code . find_code is a standalone program that implements the basic idea from Example 4 - 1 . The program causes the operating system to generate three simultaneously executing processes. Two processes execute the find_code program, and the third process executes posix_spawn() .
Listing 4 - 2

//Listing 4-2 A multithreaded version of the find_code program.

1 #include < pthread.h >

2 using namespace std;

3 #include < iostream >

4 #include < fstream >

5 #include “posix_queue.h”

6 string MagicCode(“yyzzz“);

7 ofstream Fout1;

8 ofstream Fout2;

9 bool Found = false;

10 bool magicCode(string X)

11 {

12 //...

13

14 return(X == MagicCode);

15 }

16

17

18

19 void *task1(void *X)

20 {

21 posix_queue PosixQueue;

22 string FileName;

23 string Value;

24 if(PosixQueue.open()){

25 PosixQueue.receive(FileName);

26 ifstream Fin(FileName.c_str());
27 string FileOut(FileName);

28 FileOut.append(“.out”);

29 Fout1.open(FileOut.c_str());

30 while(!Fin.eof() & & !Fin.fail() & & !Found)

31 {

32 getline(Fin,Value);

33 if(!Fin.eof() & & !Fin.fail() & & !Found){

34 if(magicCode(Value)){

35 Found = true;

36 }

37 }

38 }

39 Fin.close();

40 Fout1.close();

41 }

42 return(NULL);

43 }

44

45

46

47 void *task2(void *X)

48 {

49

50 posix_queue PosixQueue;

51 string FileName;

52 string Value;

53 if(PosixQueue.open()){

54 PosixQueue.receive(FileName);

55 ifstream Fin(FileName.c_str());

56 string FileOut(FileName);

57 FileOut.append(“.out”);

58 Fout2.open(FileOut.c_str());

59 while(!Fin.eof() & & !Fin.fail() & & !Found)

60 {

61 getline(Fin,Value);

62 if(!Fin.eof() & & !Fin.fail() & & !Found){

63 if(magicCode(Value)){

64 Found = true;

65 }

66 }

67 }

68 Fin.close();

69 Fout2.close();

70 }

71 return(NULL);

72 }

73

74

75

76

77

78 int main(int argc, char *argv[])

79 {

80
81 pthread_t ThreadA, ThreadB;

82 pthread_create(& ThreadA,NULL,task1,NULL);

83 pthread_create(& ThreadB,NULL,task2,NULL);

84 pthread_join(ThreadA,NULL);

85 pthread_join(ThreadB,NULL);

86 return(0);

87

88 }
The pthread_create() functions on Lines 82 and 83 are used to create the threads for task1 and task2 .
 82 pthread_create(& ThreadA,NULL,task1,NULL);

 83 pthread_create(& ThreadB,NULL,task2,NULL);

Notice that task1 Line 19, and task2 Line 47 are normal C++ functions. They just happen to be used as the main routine for ThreadA and ThreadB.

 19 void *task1(void *X)

 47 void *task2(void *X)

Also notice on Lines 24 and 53 that each thread accesses a PosixQueue . This is a user - defined object, and it contains the name of a different file that each thread will search.
 24 if(PosixQueue.open()){

 25 PosixQueue.receive(FileName);
Decomposition and the Operating

System ’ s Role
Parallel programming, multithreading, and multiprocessing all require that software be broken down into execution units that can be scheduled by the operating system for concurrent processing. One of the primary links between the simple plain English description and the simultaneously executing operating system threads is the process of decomposition. Consider the example from the point of view a logical breakdown and a physical breakdown. Figure 4 - 3 contains a functional (logical) breakdown of the operating system components from the guess_it program taken from Listing 4 - 1 and Listing 4 - 2 .
[image: image16.emf]
In addition to a breakdown of the logical units that involve the OS, you also have physical units. Figure 4 - 4 shows a UML deployment diagram for the programs in Listing 4 - 1 and 4 - 2 .

[image: image17.emf]
We Say Multicore , We Mean Multiprocessor

Keep in mind that the name multicore is a popular substitution for single chip multiprocessor or CMP . Multiprocessors are computers that have more than two or more CPUs or processors. Although multiprocessor computers have been around for some time now, the wide availability and low cost of the CMP has brought multiprocessor capabilities within the reach of virtually all software developers. Recall from Chapter 4 that the operating system schedules execution units that it can understand. If your software design consists of some tasks that can be executed in parallel, you will have to find a way to relate those tasks to execution units the operating system can understand. Association of your tasks with operating system execution units is part of a four - stage process involving three transformations.
What Is a Process?

A process is a unit of work created by the operating system. It is important to note that processes and programs are not necessarily equivalent. A program may consist of multiple tasks, and each task can be associated with one or more processes. Processes are artifacts of the operating system, and programs are artifacts of the developer. Current operating systems are capable of managing hundreds even thousands of concurrently loaded processes. In order for a unit of work to be called a process, it must have an address space assigned to it by the operating system. It must have a process id. It must have a state and an entry in the process table. According to the POSIX standard, it must have one or more flows of controls executing within that address space and the required system resources for those flows of control. A process has a set of executing instructions that resides in the address space of that process. Space is allocated for the instructions, any data that belongs to the process, and stacks for functions calls and local variables.

One of the important differences between a process and a thread is the fact that each process has its own address space, whereas threads share the address space of the processes that created them. A program can be broken down into one or more processes.
Why Processes and Not Threads?

When you are mapping C++ tasks to execution units that the operating system can understand, threads turn out to be easier to program. This is because threads share the same address space. This makes communication and synchronization between threads much easier. It takes the operating system less work to create a thread or to terminate a thread than it takes for processes. In general, you can create more threads within the context of a single computer than processes. The starting and stopping of threads is typically faster than processes. So why use processes at all? First, processes have their own address space. This is important because separate address spaces provide a certain amount security and isolation from rogue or poorly designed processes. Second, the number of open files that threads may use is limited to how many open files a single process can have. Dividing your C++ application up into multiple processes instead of or in conjunction with multithreading provides access to more open file resources. For multiuser applications, you want each user ’ s process to be isolated. If one user ’ s process fails, the other users can continue to perform work. If you use some threading approach for multiuser applications, a single errant thread can disrupt all the users. Operating system resources are assigned primarily to processes and then shared by threads. So, in general, threads are limited to the number of resources that a single process can have. Thus, when isolation security, address space isolation, and maximum number of resources that concurrently executing tasks may have are major concerns, it is better to use processes than threads. Communication between processes and startup time are the primary tradeoffs.
The functions listed in Table 5 - 1 are declared in spawn.h . This header contains the POSIX functions used to spawn and manage processes.
[image: image18.emf]
What Is a Thread?

A thread is a sequence or stream of executable code within a process that is scheduled for execution by the operating system on a processor or core. All processes have a primary thread. The primary thread is a process ’ s flow of control or thread of execution. A process with multiple threads has as many flows of controls as there are threads. Each thread executes independently and concurrently with its own sequence of instructions. A process with multiple threads is multithreaded. There are user - level threads and kernel - level threads. Kernel - level threads are a lighter burden to create, maintain, and manage on the operating system as compared to a process because very little information is associated with a thread. A kernel thread is called a lightweight process because it has less overhead than a process.

Threads execute independent concurrent tasks of a program. Threads can be used to simplify the program structure of an application with inherent concurrency in the same way that functions and procedures make an application ’ s structure simpler by encapsulating functionality. Threads can encapsulate concurrent functionality. Threads use minimal resources shared in the address space of a single process as compared to an application, which uses multiple processes. This contributes to an overall simpler program structure being seen by the operating system. Threads can improve the throughput and performance of the application if used correctly, by utilizing multicore processors concurrently. Each thread is assigned a subtask for which it is responsible, and the thread independently manages the execution of the subtask. Each thread can be assigned a priority reflecting the importance of the subtask it is executing.
IPC mechanism

